Skip to content

thegreatwb/AlphaRTC

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30,556 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AlphaRTC

main
dev
issues
commits

Motivation

AlphaRTC is a fork of Google's WebRTC project using ML-based bandwidth estimation, delivered by the OpenNetLab team. By equipping WebRTC with a more accurate bandwidth estimator, our mission is to eventually increase the quality of transmission.

AlphaRTC replaces Google Congestion Control (GCC) with ONNXInfer, an ML-powered bandwidth estimator, which takes in an ONNX model to make bandwidth estimation more accurate. ONNXInfer is proudly powered by Microsoft's ONNXRuntime.

Environment

Ubuntu 18.04 is the only officially supported distro at this moment. For other distros, you may be able to compile your own binary, or use our pre-provided Docker images.

Compilation

Option 1: Docker (recommended)

To compile AlphaRTC, please refer to the following steps

  1. Prerequisites

    Make sure Docker is installed on your system and add user to docker group.

    # Install Docker
    curl -fsSL get.docker.com -o get-docker.sh
    sudo sh get-docker.sh
    sudo usermod -aG docker ${USER}
  2. Clone the code

    git clone https://github.com/OpenNetLab/AlphaRTC.git
  3. Build Docker images

    cd AlphaRTC
    make all

    You should then be able to see two Docker images, alphartc and alphartc-compile using sudo docker images

Option 2: Compile from Scratch

If you don't want to use Docker, or have other reasons to compile from scratch (e.g., you want a native Windows build), you may use this method.

Note: all commands below work for both Linux (sh) and Windows (pwsh), unless otherwise specified

  1. Grab essential tools

    You may follow the guide here to obtain a copy of depot_tools

  2. Clone the repo

    git clone https://github.com/OpenNetLab/AlphaRTC.git
  3. Sync the dependencies

    cd AlphaRTC
    gclient sync
    mv src/* .
  4. Generate build rules

    Windows users: Please use x64 Native Tools Command Prompt for VS2017. The clang version comes with the project is 9.0.0, hence incompatible with VS2019. In addition, environmental variable DEPOT_TOOLS_WIN_TOOLSCHAIN has to be set to 0 and GYP_MSVS_VERSION has to be set to 2017.

    gn gen out/Default
  5. Comile

    ninja -C out/Default peerconnection_serverless

    For Windows users, we also provide a GUI version. You may compile it via

    ninja -C out/Default peerconnection_serverless_win_gui

Demo

AlphaRTC consists of many different components. peerconnection_serverless is an application for demo purposes that comes with AlphaRTC. It establishes RTC communication with another peer without the need of a server.

In order to run the application, you will need a configuration file in json format. The details are explained in the next chapter.

In addition to the config file, you will also need other files, such as video/audio source files and an ONNX model.

To run an AlphaRTC instance, put the config files in a directory, e.g., config_files, then mount it to an endpoint inside alphartc container

sudo docker run -v config_files:/app/config_files alphartc peerconnection_serverless /app/config_files/config.json

Since peerconnection_serverless needs two peers, you may spawn two instances (a receiver and a sender) in the same network and make them talk to each other. For more information on Docker networking, check Docker Networking

Configurations for peerconnection_serverless

This section describes required fields for the json configuration file.

  • serverless_connection

    • sender
      • enabled: If set to true, the client will act as sender and automatically connect to receiver when launched
      • send_to_ip: The IP of serverless peerconnection receiver
      • send_to_port: The port of serverless peerconnection receiver
    • receiver
      • enabled: If set to true, the client will act as receiver and wait for sender to connect.
      • listening_ip: The IP address that the socket in receiver binds and listends to
      • listening_port: The port number that the socket in receiver binds and listends to
    • autoclose: The time in seconds before close automatically (always run if autoclose=0)

    Note: one and only one of sender.enabled and receiver.enabled has to be true. I.e., sender.enabled XOR receiver.enabled

  • bwe_feedback_duration: The duration the receiver sends its estimated target rate every time(in millisecond)

  • onnx

    • onnx_model_path: The path of the onnx model
  • video_source

    • video_disabled:
      • enabled: If set to true, the client will not take any video source as input
    • webcam:
      • enabled: Windows-only. If set to true, then the client will use the web camera as the video source. For Linux, please set to false
    • video_file:
      • enabled: If set to true, then the client will use a video file as the video source
      • height: The height of the input video
      • width: The width of the input video
      • fps: The frames per second (FPS) of the input video
      • file_path: The file path of the input video in YUV format
    • logging:
      • enabled: If set to true, the client will write log to the file specified
      • log_output_path: The out path of the log file

    Note: one and only one of video_source.webcam.enabled and video_source.video_file.enabled has to be true. I.e., video_source.webcam.enabled XOR video_source.video_file.enabled

  • audio_source

    • microphone:
      • enabled: Whether to enable microphone output or not
    • audio_file:
      • enabled: Whether to enable audio file input or not
      • file_path: The file path of the input audio file in WAV format
  • save_to_file

    • enabled: Whether to enable file saving or not
    • audio:
      • file_path: The file path of the output audio file in WAV format
    • video
      • width: The width of the output video file
      • height: The height of the output video file
      • fps: Frames per second of the output video file
      • file_path: The file path of the output video file in YUV format

Run peerconnection_serverless

  • Dockerized environment

    To better demonstrate the usage of peerconnection_serverless, we provide an all-inclusive corpus in examples/peerconnection/serverless/corpus. You can use the following commands to execute a tiny example. After these commands terminates, you will get outvideo.yuv and outaudio.wav.

    sudo docker run -d --rm -v `pwd`/examples/peerconnection/serverless/corpus:/app -w /app --name alphartc alphartc peerconnection_serverless receiver.json
    sudo docker exec alphartc peerconnection_serverless sender.json
  • Bare metal

    If you compiled your own binary, you can also run it on your bare-metal machine.

    • Linux users:
      1. Copy the provided corpus to a new directory

        cp -r examples/peerconnection/serverless/corpus/* /path/to/your/runtime
      2. Copy the essential dynanmic libraries and add them to searching directory

        cp modules/third_party/onnxinfer/lib/*.so /path/to/your/dll
        export LD_LIBRARY_PATH=/path/to/your/dll:$LD_LIBRARY_PATH
      3. Start the receiver and the sender

        cd /path/to/your/runtime
        /path/to/alphartc/out/Default/peerconnection ./receiver.json
        /path/to/alphartc/out/Default/peerconnection ./sender.json
    • Windows users:
      1. Copy the provided corpus to a new directory

        cp -Recursive examples/peerconnection/serverless/corpus/* /path/to/your/runtime
      2. Copy the essential dynanmic libraries and add them to searching directory

        cp modules/third_party/onnxinfer/bin/*.dll /path/to/your/dll
        set PATH=/path/to/your/dll;%PATH%
      3. Start the receiver and the sender

        cd /path/to/your/runtime
        /path/to/alphartc/out/Default/peerconnection ./receiver.json
        /path/to/alphartc/out/Default/peerconnection ./sender.json

Who Are We

The OpenNetLab is an open-networking research community. Our members are from Microsoft Research Asia, Tsinghua Univeristy, Peking University, Nanjing University, KAIST, Seoul National University, National University of Singapore, SUSTech, Shanghai Jiaotong Univerisity.

WebRTC

You can find the Readme of the original WebRTC project here

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 84.2%
  • C 7.0%
  • Java 3.3%
  • Python 2.0%
  • Objective-C++ 2.0%
  • Objective-C 1.1%
  • Other 0.4%