This project aims to predict the Fire Weather Index (FWI) using machine learning based on the Algerian Forest Fires dataset. The dataset contains 244 instances from two regions of Algeria: Bejaia (Northeast) and Sidi Bel-Abbes (Northwest), collected from June 2012 to September 2012. 📊🌍🔥
- Total Instances: 244
- Bejaia Region: 122 instances
- Sidi Bel-Abbes Region: 122 instances
- Time Period: June 2012 - September 2012
- Classes:
- Fire: 138 instances
- No Fire: 106 instances
- Day (June - September)
- Month (June - September)
- Year (June - September)
- Temperature (Celsius, 22 - 42)
- RH (Relative Humidity %, 21 - 90)
- Ws (Wind Speed in km/h, 6 - 29)
- Rain (Total rainfall in mm, 0 - 16.8)
- FFMC (Fine Fuel Moisture Code: 28.6 - 92.5)
- DMC (Duff Moisture Code)
- DC (Drought Code)
- ISI (Initial Spread Index)
- BUI (Buildup Index)
- FWI (Fire Weather Index - Prediction Target)
- Classes (Fire / No Fire)
app.py- Flask web application for predicting FWItemplates/- HTML files for UI (index & prediction pages)static/- CSS & JS files for frontend designridge.pkl- Pretrained Ridge Regression modelsc.pkl- StandardScaler for data preprocessingREADME.md- Project documentation
- Clone the repository:
git clone https://github.com/omkar703/FWI_prediction cd FWI-prediction - Install dependencies:
pip install -r requirements.txt
- Run the Flask application:
python application.py
- Open the web browser and go to:
http://127.0.0.1:5000/
- The homepage provides an overview of the dataset.
- Users can enter environmental parameters in the prediction page to get an FWI prediction.
- Flask - Web framework
- Scikit-Learn - Machine learning model
- HTML, CSS, JavaScript - Frontend UI
- Python - Backend scripting
This project is open-source and available under the MIT License.
This dataset is obtained from Algerian Meteorological Services for research and educational purposes. 📖📊🌎