Skip to content

Conversation

@renovate
Copy link
Contributor

@renovate renovate bot commented Jan 16, 2026

This PR contains the following updates:

Package Change Age Confidence
liblaf-grapes (changelog) >=8,<9>=9,<10 age confidence

Release Notes

liblaf/grapes (liblaf-grapes)

v9.0.0

Compare Source

💥 BREAKING CHANGES
  • consolidate sentinel values and streamline core utilities - 076f011 by @​liblaf
  • (pretty) The duration_magnitude and pretty_duration_unit
    functions are removed, and the pretty_duration function now uses
    different parameters (prec instead of magnitude/significant). - 76b8987 by @​liblaf
📝 Documentation
  • pretty: Add docstrings and update type stubs for pretty-printing functions - ddbde14 by @​liblaf
♻ Code Refactoring
  • pretty: replace custom duration formatting with quantiphy-based implementation - 76b8987 by @​liblaf
  • consolidate sentinel values and streamline core utilities - 076f011 by @​liblaf
✅ Tests
  • conf, compat: Add comprehensive tests for configuration fields and compatibility operators - 7a04494 by @​liblaf
  • add comprehensive tests for pretty, rich.progress, and timing modules - cb371a8 by @​liblaf
❤️ Contributors

Configuration

📅 Schedule: Branch creation - At any time (no schedule defined), Automerge - At any time (no schedule defined).

🚦 Automerge: Enabled.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot requested a review from liblaf January 16, 2026 10:07
@renovate
Copy link
Contributor Author

renovate bot commented Jan 16, 2026

⚠️ Artifact update problem

Renovate failed to update an artifact related to this branch. You probably do not want to merge this PR as-is.

♻ Renovate will retry this branch, including artifacts, only when one of the following happens:

  • any of the package files in this branch needs updating, or
  • the branch becomes conflicted, or
  • you click the rebase/retry checkbox if found above, or
  • you rename this PR's title to start with "rebase!" to trigger it manually

The artifact failure details are included below:

File name: uv.lock
Command failed: uv lock --upgrade-package liblaf-grapes
Using CPython 3.13.11
  × No solution found when resolving dependencies for split (markers:
  │ python_full_version >= '3.13'):
  ╰─▶ Because liblaf-melon>=1.0.0 depends on liblaf-grapes>=8,<9 and only the
      following versions of liblaf-melon are available:
          liblaf-melon<=1.0.0
          liblaf-melon==1.1.0
      we can conclude that liblaf-melon>=1.0.0 depends on liblaf-grapes>=8,<9.
      And because your project depends on liblaf-grapes>=9, we can conclude
      that your project and liblaf-melon>=1.0.0 are incompatible.
      And because your project depends on liblaf-melon>=1 and your project
      requires liblaf-apple[cuda12], we can conclude that your project's
      requirements are unsatisfiable.

renovate-approve[bot]
renovate-approve bot previously approved these changes Jan 16, 2026
@liblaf
Copy link
Contributor

liblaf bot commented Jan 16, 2026

⚠️MegaLinter analysis: Success with warnings

Descriptor Linter Files Fixed Errors Warnings Elapsed time
✅ BASH shellcheck 2 0 0 0.02s
✅ BASH shfmt 2 0 0 0 0.79s
⚠️ COPYPASTE jscpd yes 275 no 8.96s
✅ JSON prettier 7 0 0 0 1.69s
✅ JSON v8r 7 0 0 4.65s
✅ PYTHON ruff yes yes no no 0.5s
✅ REPOSITORY git_diff yes no no 0.81s
⚠️ SPELL cspell 214 9 0 7.11s
✅ YAML prettier 4 0 0 0 1.37s
✅ YAML v8r 4 0 0 5.63s
✅ YAML yamllint 4 0 0 0.52s

Detailed Issues

⚠️ SPELL / cspell - 9 errors
exp/2025/10/22/inverse-flame/src/11-gen-manual.py:46:46     - Unknown word (nasi)       -- labii_superioris_alaeque_nasi001_00", 20.0),
	 Suggestions: [ansi, nasa, nash, nazi, nisi]
exp/2025/10/22/inverse-flame/src/11-gen-manual.py:47:46     - Unknown word (nasi)       -- labii_superioris_alaeque_nasi001_01", 20.0),
	 Suggestions: [ansi, nasa, nash, nazi, nisi]
exp/2025/10/22/inverse-flame/src/11-gen-manual.py:50:13     - Unknown word (Risorius)   -- # ("Risorius001_00", 10.0),
	 Suggestions: [Rigorous, roscius, Roscius, Risus, Rigors]
exp/2025/10/22/inverse-flame/src/11-gen-manual.py:51:13     - Unknown word (Risorius)   -- # ("Risorius001_01", 10.0),
	 Suggestions: [Rigorous, roscius, Roscius, Risus, Rigors]
exp/2025/10/22/inverse-flame/src/11-gen-manual.py:58:44     - Unknown word (nasi)       -- labii_superioris_alaeque_nasi001_00", 20.0),
	 Suggestions: [ansi, nasa, nash, nazi, nisi]
exp/2025/10/22/inverse-flame/src/11-gen-manual.py:59:44     - Unknown word (nasi)       -- labii_superioris_alaeque_nasi001_01", 20.0),
	 Suggestions: [ansi, nasa, nash, nazi, nisi]
exp/2025/10/22/inverse-flame/src/11-gen-manual.py:62:11     - Unknown word (Risorius)   -- ("Risorius001_00", 10.0),
	 Suggestions: [Rigorous, roscius, Roscius, Risus, Rigors]
exp/2025/10/22/inverse-flame/src/11-gen-manual.py:63:11     - Unknown word (Risorius)   -- ("Risorius001_01", 10.0),
	 Suggestions: [Rigorous, roscius, Roscius, Risus, Rigors]
tmp.6NE8UxMvCk/renovate-config.json:28:4      - Unknown word (pyenv)      -- "pyenv": {
	 Suggestions: [peen, pena, pend, peng, penh]
CSpell: Files checked: 214, Issues found: 9 in 2 files.


You can skip this misspellings by defining the following .cspell.json file at the root of your repository
Of course, please correct real typos before :)

{
    "version": "0.2",
    "language": "en",
    "ignorePaths": [
        "**/node_modules/**",
        "**/vscode-extension/**",
        "**/.git/**",
        "**/.pnpm-lock.json",
        ".vscode",
        "package-lock.json",
        "megalinter-reports"
    ],
    "words": [
        "Risorius",
        "nasi",
        "pyenv"
    ]
}


You can also copy-paste megalinter-reports/LINTER_DEFAULT at the root of your repository
⚠️ COPYPASTE / jscpd - 275 errors
Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [127:6 - 133:18] (6 lines, 88 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [104:6 - 110:18]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [1:1 - 23:6] (22 lines, 171 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [1:1 - 23:13]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [23:6 - 45:6] (22 lines, 168 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [23:13 - 45:13]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [45:6 - 61:6] (16 lines, 142 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [45:13 - 61:13]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [64:6 - 86:6] (22 lines, 217 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [64:13 - 86:13]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [89:6 - 110:17] (21 lines, 220 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [89:13 - 110:18]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [119:3 - 139:17] (20 lines, 240 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [113:3 - 110:18]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [148:3 - 168:17] (20 lines, 246 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [136:3 - 156:18]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [178:9 - 197:15] (19 lines, 249 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [160:9 - 179:16]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [201:6 - 207:3] (6 lines, 85 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [180:13 - 186:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace.py [223:2 - 250:7] (27 lines, 294 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [190:13 - 215:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [222:12 - 231:5] (9 lines, 101 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [197:11 - 206:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [231:5 - 242:45] (11 lines, 162 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [206:7 - 217:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [255:17 - 275:10] (20 lines, 264 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [197:11 - 217:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [297:2 - 312:3] (15 lines, 219 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [201:2 - 216:12]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [331:17 - 357:10] (26 lines, 361 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [292:17 - 318:10]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [372:23 - 381:16] (9 lines, 92 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [197:11 - 206:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [381:6 - 392:21] (11 lines, 162 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [206:7 - 217:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [404:22 - 413:6] (9 lines, 92 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [197:11 - 206:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [414:5 - 425:6] (11 lines, 171 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [231:7 - 217:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [439:26 - 448:5] (9 lines, 92 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [197:11 - 206:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [449:10 - 464:9] (15 lines, 200 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_base.py [231:7 - 246:5]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [87:6 - 92:8] (5 lines, 85 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [72:6 - 77:8]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [131:9 - 139:7] (8 lines, 108 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [203:3 - 211:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [1:1 - 21:11] (20 lines, 147 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [1:1 - 21:13]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [21:11 - 39:11] (18 lines, 122 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [21:13 - 39:13]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [39:11 - 51:2] (12 lines, 134 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [39:13 - 51:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [51:2 - 64:2] (13 lines, 121 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [51:2 - 64:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [65:9 - 76:7] (11 lines, 96 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [65:9 - 76:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [79:7 - 92:7] (13 lines, 147 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [78:5 - 91:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [88:6 - 94:8] (6 lines, 98 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [72:6 - 78:8]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [95:7 - 108:7] (13 lines, 147 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [93:5 - 106:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [111:7 - 124:7] (13 lines, 149 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [108:5 - 121:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle.py [127:7 - 143:7] (16 lines, 245 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [123:5 - 139:7]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_active.py [160:11 - 181:18] (21 lines, 215 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_phace_fixed_hess.py [190:6 - 211:10]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap.py [69:2 - 81:2] (12 lines, 138 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [77:2 - 89:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap.py [82:2 - 94:2] (12 lines, 141 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [92:2 - 104:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap.py [95:2 - 107:2] (12 lines, 143 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [107:2 - 119:2]

Clone found (python):
 - src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap.py [108:2 - 123:5] (15 lines, 213 tokens)
   src/liblaf/apple/warp/energies/elastic/hyperelastic/_arap_muscle_v2.py [122:2 - 137:13]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny-bunny/main.py [1:1 - 14:5] (13 lines, 115 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [1:1 - 14:4]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny-bunny/main.py [22:5 - 84:78] (62 lines, 768 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [22:5 - 84:8]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny-bunny/main.py [87:5 - 114:2] (27 lines, 319 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [84:4 - 111:2]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny/main.py [21:5 - 35:7] (14 lines, 116 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-bunny/main.py [17:5 - 31:4]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny/main.py [58:1 - 67:4] (9 lines, 151 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [31:1 - 40:3]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny/main.py [67:3 - 77:9] (10 lines, 124 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [40:3 - 49:6]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny/main.py [81:9 - 88:5] (7 lines, 101 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [52:9 - 59:7]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny/main.py [90:4 - 100:5] (10 lines, 128 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [58:2 - 68:4]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny/main.py [100:2 - 116:4] (16 lines, 181 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [68:2 - 84:10]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-bunny/main.py [116:6 - 132:5] (16 lines, 200 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [87:5 - 103:13]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-box/main.py [1:1 - 50:5] (49 lines, 490 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny/main.py [1:1 - 50:3]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-box/main.py [52:9 - 79:28] (27 lines, 359 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny/main.py [54:2 - 81:3]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-box/main.py [78:9 - 96:75] (18 lines, 224 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny-sphere/main.py [49:10 - 96:8]

Clone found (python):
 - exp/2025/07/30/dynamics/collision/collision-box/main.py [104:5 - 142:10] (38 lines, 481 tokens)
   exp/2025/07/30/dynamics/collision/collision-bunny/main.py [97:8 - 105:12]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [50:6 - 60:2] (10 lines, 99 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [24:1 - 34:7]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [64:5 - 73:8] (9 lines, 160 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [41:5 - 50:8]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [77:3 - 83:8] (6 lines, 75 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [28:2 - 34:7]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [86:5 - 95:8] (9 lines, 160 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [41:5 - 50:8]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [95:8 - 105:8] (10 lines, 116 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [50:8 - 34:7]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [108:5 - 117:12] (9 lines, 158 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [41:5 - 50:4]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [141:3 - 150:13] (9 lines, 90 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_quad.py [130:3 - 139:13]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_prod.py [99:8 - 109:22] (10 lines, 97 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_prod.py [76:8 - 86:13]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_prod.py [109:22 - 120:6] (11 lines, 182 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_prod.py [86:13 - 97:5]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_prod.py [120:6 - 125:2] (5 lines, 93 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_prod.py [97:5 - 104:2]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_diag.py [68:5 - 73:13] (5 lines, 65 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_prod.py [81:5 - 86:13]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_diag.py [74:5 - 85:11] (11 lines, 208 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_prod.py [88:5 - 99:11]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_diag.py [85:8 - 94:22] (9 lines, 83 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_diag.py [64:8 - 86:13]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_diag.py [94:22 - 106:11] (12 lines, 211 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_diag.py [73:13 - 122:11]

Clone found (python):
 - tests/warp/energies/elastic/hyperelastic/func/test_hess_diag.py [104:6 - 109:2] (5 lines, 80 tokens)
   tests/warp/energies/elastic/hyperelastic/func/test_hess_diag.py [83:5 - 89:2]

Clone found (python):
 - exp/2025/12/31/inverse-toy/src/20-forward-newton.py [7:1 - 31:15] (24 lines, 232 tokens)
   exp/2025/12/31/inverse-toy/src/20-forward.py [7:1 - 32:5]

Clone found (python):
 - exp/2025/12/31/inverse-toy/src/20-forward-newton.py [32:5 - 53:32] (21 lines, 280 tokens)
   exp/2025/12/31/inverse-toy/src/20-forward.py [39:5 - 60:25]

Clone found (python):
 - exp/2025/12/31/inverse-toy/src/20-forward-muscle.py [33:1 - 43:5] (10 lines, 109 tokens)
   exp/2025/12/31/inverse-toy/src/20-forward.py [24:1 - 34:5]

Clone found (python):
 - exp/2025/12/31/inverse-toy/src/20-forward-muscle.py [62:5 - 67:2] (5 lines, 79 tokens)
   exp/2025/12/31/inverse-toy/src/20-forward.py [51:5 - 56:4]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/21-inverse-inspect.py [28:5 - 33:2] (5 lines, 110 tokens)
   exp/2025/10/22/inverse-flame/src/31-animate-inspect.py [27:13 - 32:2]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/21-inverse-inspect.py [46:5 - 57:2] (11 lines, 184 tokens)
   exp/2025/10/22/inverse-flame/src/31-animate-inspect.py [54:13 - 65:2]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [19:1 - 31:7] (12 lines, 136 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [16:1 - 27:7]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [60:9 - 68:18] (8 lines, 117 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [51:9 - 59:28]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [108:9 - 124:2] (16 lines, 178 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [83:9 - 99:6]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [141:5 - 151:15] (10 lines, 150 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [107:5 - 117:14]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [163:15 - 172:10] (9 lines, 97 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [133:14 - 143:4]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [190:1 - 218:5] (28 lines, 306 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [143:1 - 171:8]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [230:5 - 245:15] (15 lines, 186 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [175:5 - 190:28]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [263:2 - 277:5] (14 lines, 118 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [203:2 - 217:8]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [282:7 - 295:19] (13 lines, 180 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-lbfgs.py [224:6 - 236:9]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-stage-2.py [6:1 - 34:6] (28 lines, 294 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [8:1 - 36:11]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-stage-2.py [41:1 - 176:3] (135 lines, 1531 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [42:1 - 177:9]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-stage-2.py [179:9 - 275:8] (96 lines, 996 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [176:9 - 272:8]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-stage-2.py [283:45 - 325:75] (42 lines, 430 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [278:58 - 320:4]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-partial.py [1:1 - 30:8] (29 lines, 309 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam-stage-2.py [1:1 - 32:8]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-partial.py [37:31 - 277:66] (240 lines, 2597 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [39:23 - 278:58]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-partial.py [278:9 - 320:8] (42 lines, 430 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [278:58 - 320:4]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-old-hess.py [1:1 - 35:11] (34 lines, 341 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam-stage-2.py [1:1 - 35:8]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-old-hess.py [35:16 - 274:63] (239 lines, 2595 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [39:23 - 278:58]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-old-hess.py [274:63 - 317:4] (43 lines, 469 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [278:58 - 321:3]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-old-hess.py [316:4 - 330:2] (14 lines, 88 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [323:5 - 337:2]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-fine.py [1:1 - 34:6] (33 lines, 325 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam-stage-2.py [1:1 - 34:11]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-fine.py [37:5 - 54:2] (17 lines, 101 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam-stage-2.py [37:5 - 57:6]

Clone found (python):
 - exp/2025/10/22/inverse-flame/src/20-inverse-adam-fine.py [56:5 - 272:2] (216 lines, 2456 tokens)
   exp/2025/10/22/inverse-flame/src/20-inverse-adam.py [57:5 - 276:2]

Clone found (python):
 - exp/2025/10/22/inverse-

(Truncated to 20000 characters out of 52957)

See detailed reports in MegaLinter artifacts

MegaLinter is graciously provided by OX Security

@codecov
Copy link

codecov bot commented Jan 16, 2026

❌ 12 Tests Failed:

Tests completed Failed Passed Skipped
59 12 47 1
View the full list of 12 ❄️ flaky test(s)
tests/jax/math/test_rotation.py::test_polar_rv

Flake rate in main: 100.00% (Passed 0 times, Failed 15 times)

Stack Traces | 9.99s run time
#x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(testing.matrices((#x1B[94m3#x1B[39;49;00m, #x1B[94m3#x1B[39;49;00m)))#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_polar_rv#x1B[39;49;00m(F: Mat33) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
                   ^^^#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe51d542200>

#x1B[1m#x1B[.../jax/math/test_rotation.py#x1B[0m:33: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

F = Array([[[-0.76369951, -0.09248251,  0.13710512],
        [ 0.66158777, -0.59512941,  0.51031201],
        [ 0.06014349, -0.55544681, -0.04039191]]], dtype=float64)

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(testing.matrices((#x1B[94m3#x1B[39;49;00m, #x1B[94m3#x1B[39;49;00m)))#x1B[90m#x1B[39;49;00m
    #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_polar_rv#x1B[39;49;00m(F: Mat33) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
        R: Mat33#x1B[90m#x1B[39;49;00m
        S: Mat33#x1B[90m#x1B[39;49;00m
        R, S = math.polar_rv(F)#x1B[90m#x1B[39;49;00m
        np.testing.assert_allclose(#x1B[90m#x1B[39;49;00m
            R.mT @ R, jnp.broadcast_to(jnp.identity(#x1B[94m3#x1B[39;49;00m), F.shape), atol=ATOL#x1B[90m#x1B[39;49;00m
        )#x1B[90m#x1B[39;49;00m
        np.testing.assert_allclose(jnp.linalg.det(R), #x1B[94m1.0#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
>       np.testing.assert_allclose(R @ S, F, atol=ATOL)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       AssertionError: #x1B[0m
#x1B[1m#x1B[31mE       Not equal to tolerance rtol=1e-07, atol=1e-07#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       Mismatched elements: 9 / 9 (100%)#x1B[0m
#x1B[1m#x1B[31mE       First 5 mismatches are at indices:#x1B[0m
#x1B[1m#x1B[31mE        [0, 0, 0]: -0.7507176526526799 (ACTUAL), -0.7636995066742065 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE        [0, 0, 1]: -0.20091949436875461 (ACTUAL), -0.09248251142607344 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE        [0, 0, 2]: -0.08149924494380247 (ACTUAL), 0.13710511563780203 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE        [0, 1, 0]: 0.6782985317709115 (ACTUAL), 0.6615877671366968 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE        [0, 1, 1]: -0.7347138547914873 (ACTUAL), -0.5951294089492527 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE       Max absolute difference among violations: 0.51135173#x1B[0m
#x1B[1m#x1B[31mE       Max relative difference among violations: 12.65975723#x1B[0m
#x1B[1m#x1B[31mE        ACTUAL: array([[[-0.750718, -0.200919, -0.081499],#x1B[0m
#x1B[1m#x1B[31mE               [ 0.678299, -0.734714,  0.228916],#x1B[0m
#x1B[1m#x1B[31mE               [ 0.029777, -0.301795,  0.47096 ]]])#x1B[0m
#x1B[1m#x1B[31mE        DESIRED: array([[[-0.7637  , -0.092483,  0.137105],#x1B[0m
#x1B[1m#x1B[31mE               [ 0.661588, -0.595129,  0.510312],#x1B[0m
#x1B[1m#x1B[31mE               [ 0.060143, -0.555447, -0.040392]]])#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_polar_rv(#x1B[0m
#x1B[1m#x1B[31mE           F=Array([[[-0.76369951, -0.09248251,  0.13710512],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.66158777, -0.59512941,  0.51031201],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.06014349, -0.55544681, -0.04039191]]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEBQQE=') as a decorator on your test case#x1B[0m

F          = Array([[[-0.76369951, -0.09248251,  0.13710512],
        [ 0.66158777, -0.59512941,  0.51031201],
        [ 0.06014349, -0.55544681, -0.04039191]]], dtype=float64)
R          = Array([[[-0.83508667, -0.51821654, -0.18461274],
        [ 0.53520329, -0.84294523, -0.05477937],
        [-0.12723085, -0.14455087,  0.98128352]]], dtype=float64)
S          = Array([[[ 0.98615338, -0.18703847,  0.13065474],
        [-0.18703847,  0.76706804, -0.21880678],
        [ 0.13065474, -0.21880678,  0.46465105]]], dtype=float64)

#x1B[1m#x1B[.../jax/math/test_rotation.py#x1B[0m:41: AssertionError
tests/jax/math/test_rotation.py::test_svd_rv

Flake rate in main: 100.00% (Passed 0 times, Failed 15 times)

Stack Traces | 11.8s run time
#x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(testing.matrices((#x1B[94m3#x1B[39;49;00m, #x1B[94m3#x1B[39;49;00m)))#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_svd_rv#x1B[39;49;00m(F: Mat33) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
                   ^^^#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe51d542980>

#x1B[1m#x1B[.../jax/math/test_rotation.py#x1B[0m:15: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

F = Array([[[-0.76369951, -0.09248251,  0.13710512],
        [ 0.66158777, -0.59512941,  0.51031201],
        [ 0.06014349, -0.55544681, -0.04039191]]], dtype=float64)

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(testing.matrices((#x1B[94m3#x1B[39;49;00m, #x1B[94m3#x1B[39;49;00m)))#x1B[90m#x1B[39;49;00m
    #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_svd_rv#x1B[39;49;00m(F: Mat33) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
        U: Mat33#x1B[90m#x1B[39;49;00m
        S: Vec3#x1B[90m#x1B[39;49;00m
        Vh: Mat33#x1B[90m#x1B[39;49;00m
        U, S, Vh = math.svd_rv(F)#x1B[90m#x1B[39;49;00m
        np.testing.assert_allclose(#x1B[90m#x1B[39;49;00m
            U.mT @ U, jnp.broadcast_to(jnp.identity(#x1B[94m3#x1B[39;49;00m), F.shape), atol=ATOL#x1B[90m#x1B[39;49;00m
        )#x1B[90m#x1B[39;49;00m
        np.testing.assert_allclose(jnp.linalg.det(U), #x1B[94m1.0#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
        np.testing.assert_allclose(#x1B[90m#x1B[39;49;00m
            Vh.mT @ Vh, jnp.broadcast_to(jnp.identity(#x1B[94m3#x1B[39;49;00m), F.shape), atol=ATOL#x1B[90m#x1B[39;49;00m
        )#x1B[90m#x1B[39;49;00m
        np.testing.assert_allclose(jnp.linalg.det(Vh), #x1B[94m1.0#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
        S: Mat33 = S[..., jnp.newaxis] * jnp.identity(#x1B[94m3#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
>       np.testing.assert_allclose(U @ S @ Vh, F, atol=ATOL)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       AssertionError: #x1B[0m
#x1B[1m#x1B[31mE       Not equal to tolerance rtol=1e-07, atol=1e-07#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       Mismatched elements: 9 / 9 (100%)#x1B[0m
#x1B[1m#x1B[31mE       First 5 mismatches are at indices:#x1B[0m
#x1B[1m#x1B[31mE        [0, 0, 0]: -0.75071765265268 (ACTUAL), -0.7636995066742065 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE        [0, 0, 1]: -0.2009194943687544 (ACTUAL), -0.09248251142607344 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE        [0, 0, 2]: -0.08149924494380253 (ACTUAL), 0.13710511563780203 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE        [0, 1, 0]: 0.6782985317709118 (ACTUAL), 0.6615877671366968 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE        [0, 1, 1]: -0.7347138547914875 (ACTUAL), -0.5951294089492527 (DESIRED)#x1B[0m
#x1B[1m#x1B[31mE       Max absolute difference among violations: 0.51135173#x1B[0m
#x1B[1m#x1B[31mE       Max relative difference among violations: 12.65975723#x1B[0m
#x1B[1m#x1B[31mE        ACTUAL: array([[[-0.750718, -0.200919, -0.081499],#x1B[0m
#x1B[1m#x1B[31mE               [ 0.678299, -0.734714,  0.228916],#x1B[0m
#x1B[1m#x1B[31mE               [ 0.029777, -0.301795,  0.47096 ]]])#x1B[0m
#x1B[1m#x1B[31mE        DESIRED: array([[[-0.7637  , -0.092483,  0.137105],#x1B[0m
#x1B[1m#x1B[31mE               [ 0.661588, -0.595129,  0.510312],#x1B[0m
#x1B[1m#x1B[31mE               [ 0.060143, -0.555447, -0.040392]]])#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_svd_rv(#x1B[0m
#x1B[1m#x1B[31mE           F=Array([[[-0.76369951, -0.09248251,  0.13710512],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.66158777, -0.59512941,  0.51031201],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.06014349, -0.55544681, -0.04039191]]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       Explanation:#x1B[0m
#x1B[1m#x1B[31mE           These lines were always and only run by failing examples:#x1B[0m
#x1B[1m#x1B[31mE               .../apple/apple/.venv/lib/python3.12.../numpy/_core/arrayprint.py:1020#x1B[0m
#x1B[1m#x1B[31mE               .../apple/apple/.venv/lib/python3.12.../numpy/_core/arrayprint.py:1025#x1B[0m
#x1B[1m#x1B[31mE               .../apple/apple/.venv/lib/python3.12.../numpy/_core/fromnumeric.py:53#x1B[0m
#x1B[1m#x1B[31mE               .../apple/apple/.venv/lib/python3.12.../numpy/_core/numeric.py:672#x1B[0m
#x1B[1m#x1B[31mE               .../apple/apple/.venv/lib/python3.12.../numpy/lib/_stride_tricks_impl.py:375#x1B[0m
#x1B[1m#x1B[31mE               (and 6 more with settings.verbosity >= verbose)#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEBQQE=') as a decorator on your test case#x1B[0m

F          = Array([[[-0.76369951, -0.09248251,  0.13710512],
        [ 0.66158777, -0.59512941,  0.51031201],
        [ 0.06014349, -0.55544681, -0.04039191]]], dtype=float64)
S          = Array([[[1.16687313, 0.        , 0.        ],
        [0.        , 0.70264464, 0.        ],
        [0.        , 0.        , 0.34835471]]], dtype=float64)
U          = Array([[[-0.43295697, -0.83037767, -0.35074375],
        [ 0.85503034, -0.25510504, -0.45149147],
        [ 0.28543194, -0.49537293,  0.82044761]]], dtype=float64)
Vh         = Array([[[ 0.78285589, -0.53763772,  0.313181  ],
        [ 0.619931  ,  0.71696161, -0.3188285 ],
        [-0.05312453,  0.44374738,  0.8945759 ]]], dtype=float64)

#x1B[1m#x1B[.../jax/math/test_rotation.py#x1B[0m:29: AssertionError
tests/model/test_forward.py::test_forward

Flake rate in main: 48.08% (Passed 27 times, Failed 25 times)

Stack Traces | 55.6s run time
#x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_forward#x1B[39;49;00m() -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
        mesh: pv.UnstructuredGrid = pv.examples.download_letter_a()  #x1B[90m# pyright: ignore[reportAssignmentType]#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
        mesh.cell_data[MU] = np.full((mesh.n_cells,), #x1B[94m1.0#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
        mesh.point_data[DIRICHLET_MASK] = mesh.points[:, #x1B[94m1#x1B[39;49;00m] < mesh.bounds.y_min + #x1B[94m0.1#x1B[39;49;00m * (#x1B[90m#x1B[39;49;00m
            mesh.bounds.y_max - mesh.bounds.y_min#x1B[90m#x1B[39;49;00m
        )#x1B[90m#x1B[39;49;00m
        mesh.point_data[DIRICHLET_VALUE] = np.zeros((mesh.n_points, #x1B[94m3#x1B[39;49;00m))#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
        builder = ModelBuilder()#x1B[90m#x1B[39;49;00m
        mesh = builder.assign_global_ids(mesh)#x1B[90m#x1B[39;49;00m
        builder.add_dirichlet(mesh)#x1B[90m#x1B[39;49;00m
        elastic: Arap = Arap.from_pyvista(mesh)#x1B[90m#x1B[39;49;00m
        builder.add_energy(elastic)#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
        model: Model = builder.finalize()#x1B[90m#x1B[39;49;00m
        rng: np.random.Generator = np.random.default_rng()#x1B[90m#x1B[39;49;00m
        model.u_free = jnp.asarray(#x1B[90m#x1B[39;49;00m
            rng.uniform(-mesh.length, mesh.length, model.u_free.shape)#x1B[90m#x1B[39;49;00m
        )#x1B[90m#x1B[39;49;00m
        forward = Forward(model, optimizer=PNCG(max_steps=#x1B[94m1000#x1B[39;49;00m, rtol=#x1B[94m1e-15#x1B[39;49;00m))#x1B[90m#x1B[39;49;00m
        solution: PNCG.Solution = forward.step()#x1B[90m#x1B[39;49;00m
>       #x1B[94massert#x1B[39;49;00m solution.success#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       AssertionError: assert False#x1B[0m
#x1B[1m#x1B[31mE        +  where False = OptimizeSolution(\n  result=<Result.STAGNATION: 'stagnation'>,\n  state=PNCGState(\n    structure=Structure(full_flat=f64...NCGStats(\n    n_steps=408,\n    relative_decrease=Array(5.84692201e-12, dtype=float64),\n    time=52.41820830399979\n  )\n).success#x1B[0m

builder    = ModelBuilder(
  edges_length_sum=np.float64(414.4637687552529),
  n_edges=7119,
  dirichlet=DirichletBuilder(mask=bool...      params=Arap__Params(
               	mu=array(shape=(4802,), dtype=float64),
               )
      )
    }
  )
)
elastic    = Arap(
  id='Arap000',
  cells=array(shape=(4802,), dtype=vec4i),
  dhdX=array(shape=(4802, 1), dtype=mat43(d)),
  dV=a...(shape=(4802, 1), dtype=float64),
  params=Arap__Params(
         	mu=array(shape=(4802,), dtype=float64),
         )
)
forward    = Forward(
  model=Model(
    dirichlet=Dirichlet(
      dim=3,
      dirichlet_index=i64[534](jax),
      dirichlet_val...tart_threshold=Array(inf, dtype=float64, weak_type=True),
    max_delta=Array(inf, dtype=float64, weak_type=True)
  )
)
mesh       = UnstructuredGrid (0x7fe4cc547e80)
  N Cells:    4802
  N Points:   1317
  X Bounds:   3.159e+00, 3.892e+00
  Y Bounds:   -8.999e-02, 7.415e-01
  Z Bounds:   -1.735e-18, 3.000e-01
  N Arrays:   4
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=i64[534](jax),
    dirichlet_value=f64[534](jax),
    fre... dtype=float64),
                 )
        )
      }
    )
  ),
  edges_length_mean=Array(0.05821938, dtype=float64)
)
rng        = Generator(PCG64) at 0x7FE4D73ECD60
solution   = OptimizeSolution(
  result=<Result.STAGNATION: 'stagnation'>,
  state=PNCGState(
    structure=Structure(full_flat=f64...NCGStats(
    n_steps=408,
    relative_decrease=Array(5.84692201e-12, dtype=float64),
    time=52.41820830399979
  )
)

#x1B[1m#x1B[31mtests/model/test_forward.py#x1B[0m:32: AssertionError
tests/model/test_inverse.py::test_inverse

Flake rate in main: 97.44% (Passed 1 times, Failed 38 times)

Stack Traces | 37.6s run time
>   #x1B[0msolution: Optimizer.Solution = inverse.solve(params)#x1B[90m#x1B[39;49;00m


#x1B[1m#x1B[31mtests/model/test_inverse.py#x1B[0m:93: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../apple/inverse/_inverse.py#x1B[0m:189: in solve
    #x1B[0moptimizer_solution: Optimizer.Solution = #x1B[96mself#x1B[39;49;00m.optimizer.minimize(#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../optim/scipy/_scipy.py#x1B[0m:117: in minimize
    #x1B[0mraw: OptimizeResult = scipy.optimize.minimize(  #x1B[90m# pyright: ignore[reportCallIssue]#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_minimize.py#x1B[0m:784: in minimize
    #x1B[0mres = _minimize_lbfgsb(fun, x0, args, jac, bounds,#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_lbfgsb_py.py#x1B[0m:413: in _minimize_lbfgsb
    #x1B[0msf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_optimize.py#x1B[0m:310: in _prepare_scalar_function
    #x1B[0msf = ScalarFunction(fun, x0, args, grad, hess,#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_differentiable_functions.py#x1B[0m:283: in __init__
    #x1B[0m#x1B[96mself#x1B[39;49;00m._update_fun()#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_differentiable_functions.py#x1B[0m:362: in _update_fun
    #x1B[0mfx = #x1B[96mself#x1B[39;49;00m._wrapped_fun(#x1B[96mself#x1B[39;49;00m.x)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/_lib/_util.py#x1B[0m:603: in __call__
    #x1B[0mfx = #x1B[96mself#x1B[39;49;00m.f(np.copy(x), *#x1B[96mself#x1B[39;49;00m.args)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_optimize.py#x1B[0m:80: in __call__
    #x1B[0m#x1B[96mself#x1B[39;49;00m._compute_if_needed(x, *args)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_optimize.py#x1B[0m:74: in _compute_if_needed
    #x1B[0mfg = #x1B[96mself#x1B[39;49;00m.fun(x, *args)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../peach/functools/_descriptor.py#x1B[0m:62: in wrapper
    #x1B[0moutputs: Sequence[Any] = _as_tuple(wrapped(*args, **kwargs))#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[.../apple/inverse/_inverse.py#x1B[0m:206: in value_and_grad
    #x1B[0mp: Full = #x1B[96mself#x1B[39;49;00m.adjoint(u_full, dLdu)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[.../apple/inverse/_inverse.py#x1B[0m:98: in adjoint
    #x1B[0msolution: LinearSolver.Solution = #x1B[96mself#x1B[39;49;00m.adjoint_inner(u, dLdu)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[.../apple/inverse/_inverse.py#x1B[0m:138: in adjoint_inner
    #x1B[0msolution: LinearSolver.Solution = #x1B[96mself#x1B[39;49;00m.adjoint_solver.solve(system, params)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/abc/_solver.py#x1B[0m:76: in solve
    #x1B[0mstate, stats, result = #x1B[96mself#x1B[39;49;00m._solve(#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/misc/_composite.py#x1B[0m:57: in _solve
    #x1B[0msolution = solver.solve(#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/abc/_solver.py#x1B[0m:76: in solve
    #x1B[0mstate, stats, result = #x1B[96mself#x1B[39;49;00m._solve(#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/jax/_base.py#x1B[0m:70: in _solve
    #x1B[0mstate.params_flat, stats.info = #x1B[96mself#x1B[39;49;00m._wrapped(#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/jax/_cg.py#x1B[0m:17: in _wrapped
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m jax.scipy.sparse.linalg.cg(*args, **kwargs)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/sparse/linalg.py#x1B[0m:286: in cg
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m _isolve(_cg_solve,#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/sparse/linalg.py#x1B[0m:226: in _isolve
    #x1B[0mx = lax.custom_linear_solve(#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/sparse/linalg.py#x1B[0m:128: in _cg_solve
    #x1B[0mr0 = _sub(b, A(x0))#x1B[90m#x1B[39;49;00m
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

>   #x1B[0m#x1B[94mreturn#x1B[39;49;00m wrapped(*args, **kwargs)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE   jax._src.source_info_util.JaxStackTraceBeforeTransformation: jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_825 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE   #x1B[0m
#x1B[1m#x1B[31mE   The preceding stack trace is the source of the JAX operation that, once transformed by JAX, triggered the following exception.#x1B[0m
#x1B[1m#x1B[31mE   #x1B[0m
#x1B[1m#x1B[31mE   --------------------#x1B[0m


#x1B[1m#x1B[31m.venv/lib/python3.12.../grapes/timing/_callable.py#x1B[0m:26: JaxStackTraceBeforeTransformation

#x1B[33mThe above exception was the direct cause of the following exception:#x1B[0m

mesh = UnstructuredGrid (0x7fe4c3465900)
  N Cells:    96
  N Points:   35
  X Bounds:   0.000e+00, 2.000e+00
  Y Bounds:   0.000e+00, 2.000e+00
  Z Bounds:   0.000e+00, 2.000e+00
  N Arrays:   9
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=i64[27](jax),
    dirichlet_value=f64[27](jax),
    free_...,
                 )
        )
      }
    )
  ),
  edges_length_mean=Array(1.04115139, dtype=float64),
  frozen=True
)

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_inverse#x1B[39;49;00m(mesh: pv.UnstructuredGrid, model: Model) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
        #x1B[37m@tree#x1B[39;49;00m.define#x1B[90m#x1B[39;49;00m
        #x1B[94mclass#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[04m#x1B[92mInverseActivation#x1B[39;49;00m(Inverse):#x1B[90m#x1B[39;49;00m
            surface_idx: Integer[Array, #x1B[33m"#x1B[39;49;00m#x1B[33m surface#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m]#x1B[90m#x1B[39;49;00m
            target: Float[Array, #x1B[33m"#x1B[39;49;00m#x1B[33msurface dim#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m]#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
            #x1B[37m@tree#x1B[39;49;00m.define#x1B[90m#x1B[39;49;00m
            #x1B[94mclass#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[04m#x1B[92mParams#x1B[39;49;00m(Inverse.Params):#x1B[90m#x1B[39;49;00m
                activation: Float[Array, #x1B[33m"#x1B[39;49;00m#x1B[33mcells 6#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m]#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
            #x1B[37m@tree#x1B[39;49;00m.define#x1B[90m#x1B[39;49;00m
            #x1B[94mclass#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[04m#x1B[92mAux#x1B[39;49;00m(Inverse.Aux):#x1B[90m#x1B[39;49;00m
                #x1B[94mpass#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
            #x1B[37m@override#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
            #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mloss#x1B[39;49;00m(#x1B[90m#x1B[39;49;00m
                #x1B[96mself#x1B[39;49;00m, u: Float[Array, #x1B[33m"#x1B[39;49;00m#x1B[33mpoints dim#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m], params: ModelParams#x1B[90m#x1B[39;49;00m
            ) -> #x1B[96mtuple#x1B[39;49;00m[Float[Array, #x1B[33m"#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m], Aux]:#x1B[90m#x1B[39;49;00m
                loss: Float[Array, #x1B[33m"#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m] = #x1B[94m0.5#x1B[39;49;00m * jnp.sum(#x1B[90m#x1B[39;49;00m
                    jnp.square(u[#x1B[96mself#x1B[39;49;00m.surface_idx] - #x1B[96mself#x1B[39;49;00m.target)#x1B[90m#x1B[39;49;00m
                )#x1B[90m#x1B[39;49;00m
                #x1B[94mreturn#x1B[39;49;00m loss, #x1B[96mself#x1B[39;49;00m.Aux()#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
            #x1B[37m@override#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
            #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mmake_params#x1B[39;49;00m(#x1B[96mself#x1B[39;49;00m, params: Params) -> ModelParams:  #x1B[90m# pyright: ignore[reportIncompatibleMethodOverride]#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
                #x1B[94mreturn#x1B[39;49;00m {#x1B[33m"#x1B[39;49;00m#x1B[33melastic#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m: {#x1B[33m"#x1B[39;49;00m#x1B[33mactivation#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m: params.activation}}#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
        forward = Forward(model)#x1B[90m#x1B[39;49;00m
        forward.step()#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
        surface: pv.PolyData = mesh.extract_surface()  #x1B[90m# pyright: ignore[reportAssignmentType]#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
        surface_idx: Integer[Array, #x1B[33m"#x1B[39;49;00m#x1B[33m surface#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m] = jnp.asarray(surface.point_data[POINT_ID])#x1B[90m#x1B[39;49;00m
        target: Float[Array, #x1B[33m"#x1B[39;49;00m#x1B[33msurface dim#x1B[39;49;00m#x1B[33m"#x1B[39;49;00m] = forward.u_full[surface_idx]#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
        inverse = InverseActivation(forward, surface_idx=surface_idx, target=target)#x1B[90m#x1B[39;49;00m
        params = InverseActivation.Params(activation=jnp.zeros((mesh.n_cells, #x1B[94m6#x1B[39;49;00m)))#x1B[90m#x1B[39;49;00m
>       solution: Optimizer.Solution = inverse.solve(params)#x1B[90m#x1B[39;49;00m
                                       ^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m

InverseActivation = <class 'tests.model.test_inverse.test_inverse.<locals>.InverseActivation'>
forward    = Forward(
  model=Model(
    dirichlet=Dirichlet(
      dim=3,
      dirichlet_index=i64[27](jax),
      dirichlet_valu... beta_restart_threshold=Array(10., dtype=float64, weak_type=True),
    max_delta=Array(0.15617271, dtype=float64)
  )
)
inverse    = test_inverse.<locals>.InverseActivation(
  forward=Forward(
    model=Model(
      dirichlet=Dirichlet(
        dim=3,...lse, dtype=bool),
  last_forward_success=Array(True, dtype=bool),
  surface_idx=i64[26](jax),
  target=f64[26,3](jax)
)
mesh       = UnstructuredGrid (0x7fe4c3465900)
  N Cells:    96
  N Points:   35
  X Bounds:   0.000e+00, 2.000e+00
  Y Bounds:   0.000e+00, 2.000e+00
  Z Bounds:   0.000e+00, 2.000e+00
  N Arrays:   9
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=i64[27](jax),
    dirichlet_value=f64[27](jax),
    free_...,
                 )
        )
      }
    )
  ),
  edges_length_mean=Array(1.04115139, dtype=float64),
  frozen=True
)
params     = test_inverse.<locals>.InverseActivation.Params(activation=f64[96,6](jax))
surface    = PolyData (0x7fe4c32b22c0)
  N Cells:    48
  N Points:   26
  N Strips:   0
  X Bounds:   0.000e+00, 2.000e+00
  Y Bounds:   0.000e+00, 2.000e+00
  Z Bounds:   0.000e+00, 2.000e+00
  N Arrays:   11
surface_idx = Array([ 0,  4,  1,  3, 10,  9, 12,  5,  2, 11, 14,  7,  6, 15,  8, 17, 16,
       19, 18, 21, 20, 23, 24, 26, 25, 22], dtype=int64)
target     = Array([[ 0.        ,  0.        ,  0.        ],
       [-0.23300368, -0.10424362,  0.04610791],
       [ 0.        ,  ...63393],
       [ 0.1213613 , -0.27365384, -0.2230454 ],
       [ 0.01854531, -0.19973726, -0.25351019]], dtype=float64)

#x1B[1m#x1B[31mtests/model/test_inverse.py#x1B[0m:93: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../apple/inverse/_inverse.py#x1B[0m:189: in solve
    #x1B[0moptimizer_solution: Optimizer.Solution = #x1B[96mself#x1B[39;49;00m.optimizer.minimize(#x1B[90m#x1B[39;49;00m
        callback   = None
        constraints = ()
        objective  = Objective(
  _kwargs={},
  _grad_wrapped=<bound method Inverse.grad of test_inverse.<locals>.InverseActivation(
      ...             surface_idx=i64[26](jax),
                            target=f64[26,3](jax)
                          )>
)
        params     = test_inverse.<locals>.InverseActivation.Params(activation=f64[96,6](jax))
        self       = test_inverse.<locals>.InverseActivation(
  forward=Forward(
    model=Model(
      dirichlet=Dirichlet(
        dim=3,...lse, dtype=bool),
  last_forward_success=Array(True, dtype=bool),
  surface_idx=i64[26](jax),
  target=f64[26,3](jax)
)
#x1B[1m#x1B[31m.venv/lib/python3.12.../optim/scipy/_scipy.py#x1B[0m:117: in minimize
    #x1B[0mraw: OptimizeResult = scipy.optimize.minimize(  #x1B[90m# pyright: ignore[reportCallIssue]#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
        callback   = None
        callback_wrapper = <FunctionWrapper at 0x7fe4d6bbb990 for function at 0x7fe4c32f84a0>
        constraints = []
        fun        = <function FunctionDescriptor.__get__.<locals>.wrapper at 0x7fe4c32fba60>
        jac        = True
        objective  = Objective(
  structure=Structure(
    full_flat=f64[576](jax),
    static=test_inverse.<locals>.InverseActivation.Para...](jax)
                          )>,
  _value_and_grad_wrapper=<function FunctionDescriptor.__get__.<locals>.wrapper>
)
        options    = {'maxiter': 256}
        params     = test_inverse.<locals>.InverseActivation.Params(activation=f64[96,6](jax))
        self       = ScipyOptimizer(method='L-BFGS-B', tol=1e-05)
        state      = ScipyState(
  structure=Structure(
    full_flat=f64[576](jax),
    static=test_inverse.<locals>.InverseActivation.Params(activation=None)
  ),
  result={'x': f64[576](jax)}
)
        stats      = ScipyStats(time=11.373037631999978)
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_minimize.py#x1B[0m:784: in minimize
    #x1B[0mres = _minimize_lbfgsb(fun, x0, args, jac, bounds,#x1B[90m#x1B[39;49;00m
        args       = ()
        bounds     = None
        callback   = <function _wrap_callback.<locals>.wrapped_callback at 0x7fe4c32f8b80>
        constraints = []
        fun        = <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>
        hess       = None
        hessp      = None
        jac        = <bound method MemoizeJac.derivative of <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>>
        meth       = 'l-bfgs-b'
        method     = 'L-BFGS-B'
        options    = {'ftol': 1e-05, 'gtol': 1e-05, 'maxiter': 256}
        remove_vars = False
        tol        = 1e-05
        x0         = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_lbfgsb_py.py#x1B[0m:413: in _minimize_lbfgsb
    #x1B[0msf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,#x1B[90m#x1B[39;49;00m
        args       = ()
        bounds     = None
        callback   = <function _wrap_callback.<locals>.wrapped_callback at 0x7fe4c32f8b80>
        disp       = <object object at 0x7fe556c2d240>
        eps        = 1e-08
        factr      = np.float64(45035996273.70496)
        finite_diff_rel_step = None
        ftol       = 1e-05
        fun        = <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>
        gtol       = 1e-05
        iprint     = <object object at 0x7fe556c2d240>
        jac        = <bound method MemoizeJac.derivative of <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>>
        m          = 10
        maxcor     = 10
        maxfun     = 15000
        maxiter    = 256
        maxls      = 20
        n          = 576
        pgtol      = 1e-05
        unknown_options = {}
        workers    = None
        x0         = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_optimize.py#x1B[0m:310: in _prepare_scalar_function
    #x1B[0msf = ScalarFunction(fun, x0, args, grad, hess,#x1B[90m#x1B[39;49;00m
        args       = ()
        bounds     = (-inf, inf)
        epsilon    = 1e-08
        finite_diff_rel_step = None
        fun        = <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>
        grad       = <bound method MemoizeJac.derivative of <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>>
        hess       = <function _prepare_scalar_function.<locals>.hess at 0x7fe4c32f8ae0>
        jac        = <bound method MemoizeJac.derivative of <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>>
        workers    = <class 'map'>
        x0         = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_differentiable_functions.py#x1B[0m:283: in __init__
    #x1B[0m#x1B[96mself#x1B[39;49;00m._update_fun()#x1B[90m#x1B[39;49;00m
        _dtype     = dtype('float64')
        _x         = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
        args       = ()
        epsilon    = 1e-08
        finite_diff_bounds = (-inf, inf)
        finite_diff_options = {}
        finite_diff_rel_step = None
        fun        = <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>
        grad       = <bound method MemoizeJac.derivative of <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>>
        hess       = <function _prepare_scalar_function.<locals>.hess at 0x7fe4c32f8ae0>
        self       = <scipy.optimize._differentiable_functions.ScalarFunction object at 0x7fe4cdbc8350>
        workers    = <class 'map'>
        x0         = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
        xp         = <module 'scipy._lib.array_api_compat.numpy' from '.../apple/apple/.venv/lib/python3.12.../array_api_compat/numpy/__init__.py'>
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_differentiable_functions.py#x1B[0m:362: in _update_fun
    #x1B[0mfx = #x1B[96mself#x1B[39;49;00m._wrapped_fun(#x1B[96mself#x1B[39;49;00m.x)#x1B[90m#x1B[39;49;00m
         ^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        self       = <scipy.optimize._differentiable_functions.ScalarFunction object at 0x7fe4cdbc8350>
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/_lib/_util.py#x1B[0m:603: in __call__
    #x1B[0mfx = #x1B[96mself#x1B[39;49;00m.f(np.copy(x), *#x1B[96mself#x1B[39;49;00m.args)#x1B[90m#x1B[39;49;00m
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        self       = <scipy._lib._util._ScalarFunctionWrapper object at 0x7fe4c31b1070>
        x          = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_optimize.py#x1B[0m:80: in __call__
    #x1B[0m#x1B[96mself#x1B[39;49;00m._compute_if_needed(x, *args)#x1B[90m#x1B[39;49;00m
        args       = ()
        self       = <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>
        x          = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/optimize/_optimize.py#x1B[0m:74: in _compute_if_needed
    #x1B[0mfg = #x1B[96mself#x1B[39;49;00m.fun(x, *args)#x1B[90m#x1B[39;49;00m
         ^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = ()
        self       = <scipy.optimize._optimize.MemoizeJac object at 0x7fe4cdbc9fa0>
        x          = array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
#x1B[1m#x1B[.../apple/inverse/_inverse.py#x1B[0m:206: in value_and_grad
    #x1B[0mp: Full = #x1B[96mself#x1B[39;49;00m.adjoint(u_full, dLdu)#x1B[90m#x1B[39;49;00m
              ^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        aux        = test_inverse.<locals>.InverseActivation.Aux()
        dLdq       = {'elastic': {'activation': Array([[0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0...],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.]], dtype=float64)}}
        dLdu       = Array([[ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  ...     ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ]], dtype=float64)
        loss       = Array(0.90840142, dtype=float64)
        model_params = {'elastic': {'activation': Array([[0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0...],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0.]], dtype=float64)}}
        model_params_vjp = VJP(fun=functools.partial(<function _vjp3_callable at 0x7fe579bbe200>, [], [False], { lambda ; a:f64[96,6]. let  in (a...arams[()], [*]),)), out_tree=PyTreeDef({'elastic': {'activation': *}}), args_res=[(NotNeeded(),)], opaque_residuals=[])
        params     = test_inverse.<locals>.InverseActivation.Params(activation=f64[96,6](jax))
        self       = test_inverse.<locals>.InverseActivation(
  forward=Forward(
    model=Model(
      dirichlet=Dirichlet(
        dim=3,...lse, dtype=bool),
  last_forward_success=Array(True, dtype=bool),
  surface_idx=i64[26](jax),
  target=f64[26,3](jax)
)
        u_full     = Array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00]...00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00]],      dtype=float64)
#x1B[1m#x1B[.../apple/inverse/_inverse.py#x1B[0m:98: in adjoint
    #x1B[0msolution: LinearSolver.Solution = #x1B[96mself#x1B[39;49;00m.adjoint_inner(u, dLdu)#x1B[90m#x1B[39;49;00m
                                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        dLdu       = Array([[ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  ...     ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ]], dtype=float64)
        self       = test_inverse.<locals>.InverseActivation(
  forward=Forward(
    model=Model(
      dirichlet=Dirichlet(
        dim=3,...lse, dtype=bool),
  last_forward_success=Array(True, dtype=bool),
  surface_idx=i64[26](jax),
  target=f64[26,3](jax)
)
        u          = Array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00]...00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00]],      dtype=float64)
#x1B[1m#x1B[.../apple/inverse/_inverse.py#x1B[0m:138: in adjoint_inner
    #x1B[0msolution: LinearSolver.Solution = #x1B[96mself#x1B[39;49;00m.adjoint_solver.solve(system, params)#x1B[90m#x1B[39;49;00m
                                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        dLdu       = Array([[ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  ...     ],
       [ 0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ]], dtype=float64)
        matvec     = <jax._src.custom_derivatives.custom_jvp object at 0x7fe4c327a5a0>
        matvec_jvp = <function Inverse.adjoint_inner.<locals>.matvec_jvp at 0x7fe4c32a5b20>
        params     = Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ... 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64)
        preconditioner = Array([0.31578947, 0.27272727, 0.31578947, 0.16666667, 0.16666667,
       0.16666667, 0.35294118, 0.42857143, 0.352941... 0.125     , 0.125     , 0.125     , 0.125     , 0.125     ,
       0.125     , 0.125     , 0.125     ], dtype=float64)
        preconditioner_fn = <function Inverse.adjoint_inner.<locals>.preconditioner_fn at 0x7fe4c32a7240>
        self       = test_inverse.<locals>.InverseActivation(
  forward=Forward(
    model=Model(
      dirichlet=Dirichlet(
        dim=3,...lse, dtype=bool),
  last_forward_success=Array(True, dtype=bool),
  surface_idx=i64[26](jax),
  target=f64[26,3](jax)
)
        system     = LinearSystem(
  _kwargs={},
  _matvec_wrapped=<jax._src.custom_derivatives.custom_jvp object at 0x7fe4c327a5a0>,
  b=f...r.<locals>.preconditioner_fn>,
  _rpreconditioner_wrapped=<function Inverse.adjoint_inner.<locals>.preconditioner_fn>
)
        u          = Array([[ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00]...00,  0.00000000e+00,  0.00000000e+00],
       [ 0.00000000e+00,  0.00000000e+00,  0.00000000e+00]],      dtype=float64)
        u_free     = Array([ 5.75383323e-17,  1.52721599e-17,  2.58720539e-17,  6.07349063e-17,
        2.60756920e-17,  6.41272332e-17,  6...000000e+00,  0.00000000e+00,  0.00000000e+00,  0.00000000e+00,
        0.00000000e+00,  0.00000000e+00], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/abc/_solver.py#x1B[0m:76: in solve
    #x1B[0mstate, stats, result = #x1B[96mself#x1B[39;49;00m._solve(#x1B[90m#x1B[39;49;00m
        StateT     = StateT
        StatsT     = StatsT
        callback   = None
        constraints = []
        params     = Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ... 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64)
        self       = CompositeSolver(
  jit=True,
  timer=True,
  solvers=[
    JaxCG(
      max_steps=1000,
      atol=Array(0., dtype=flo...  continue_atol=Array(0., dtype=float64, weak_type=True),
  continue_rtol=Array(0.001, dtype=float64, weak_type=True)
)
        state      = CompositeState(
  structure=Structure(full_flat=f64[78](jax)), params_flat=f64[78](jax), state=[]
)
        stats      = CompositeStats(stats=[], time=0.8700058670001454)
        system     = LinearSystem(
  structure=Structure(full_flat=f64[78](jax)),
  _flatten=True,
  _jit=True,
  _kwargs={},
  _timer=True...r.<locals>.preconditioner_fn>,
  _rpreconditioner_wrapped=<function Inverse.adjoint_inner.<locals>.preconditioner_fn>
)
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/misc/_composite.py#x1B[0m:57: in _solve
    #x1B[0msolution = solver.solve(#x1B[90m#x1B[39;49;00m
        callback   = None
        constraints = []
        self       = CompositeSolver(
  jit=True,
  timer=True,
  solvers=[
    JaxCG(
      max_steps=1000,
      atol=Array(0., dtype=flo...  continue_atol=Array(0., dtype=float64, weak_type=True),
  continue_rtol=Array(0.001, dtype=float64, weak_type=True)
)
        solution   = None
        solver     = JaxCG(
  max_steps=1000,
  atol=Array(0., dtype=float64, weak_type=True),
  rtol=Array(0.001, dtype=float64, weak_type...
  atol_primary=Array(0., dtype=float64, weak_type=True),
  rtol_primary=Array(1.e-05, dtype=float64, weak_type=True)
)
        state      = CompositeState(
  structure=Structure(full_flat=f64[78](jax)), params_flat=f64[78](jax), state=[]
)
        stats      = CompositeStats(stats=[], time=0.8806993939997483)
        system     = LinearSystem(
  structure=Structure(full_flat=f64[78](jax)),
  _flatten=True,
  _jit=True,
  _kwargs={},
  _timer=True...r.<locals>.preconditioner_fn>,
  _rpreconditioner_wrapped=<function Inverse.adjoint_inner.<locals>.preconditioner_fn>
)
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/abc/_solver.py#x1B[0m:76: in solve
    #x1B[0mstate, stats, result = #x1B[96mself#x1B[39;49;00m._solve(#x1B[90m#x1B[39;49;00m
        StateT     = StateT
        StatsT     = StatsT
        callback   = None
        constraints = []
        params     = Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ... 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64)
        self       = JaxCG(
  max_steps=1000,
  atol=Array(0., dtype=float64, weak_type=True),
  rtol=Array(0.001, dtype=float64, weak_type...
  atol_primary=Array(0., dtype=float64, weak_type=True),
  rtol_primary=Array(1.e-05, dtype=float64, weak_type=True)
)
        state      = JaxState(structure=Structure(full_flat=f64[78](jax)), params_flat=f64[78](jax))
        stats      = JaxStats(time=0.8868760269997438)
        system     = LinearSystem(
  structure=Structure(full_flat=f64[78](jax)),
  _flatten=True,
  _jit=True,
  _kwargs={},
  _timer=True...JitWrapper at 0x7fe4cdba58b0>,
  _rpreconditioner_wrapped=<function Inverse.adjoint_inner.<locals>.preconditioner_fn>
)
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/jax/_base.py#x1B[0m:70: in _solve
    #x1B[0mstate.params_flat, stats.info = #x1B[96mself#x1B[39;49;00m._wrapped(#x1B[90m#x1B[39;49;00m
        callback   = None
        constraints = []
        self       = JaxCG(
  max_steps=1000,
  atol=Array(0., dtype=float64, weak_type=True),
  rtol=Array(0.001, dtype=float64, weak_type...
  atol_primary=Array(0., dtype=float64, weak_type=True),
  rtol_primary=Array(1.e-05, dtype=float64, weak_type=True)
)
        state      = JaxState(structure=Structure(full_flat=f64[78](jax)), params_flat=f64[78](jax))
        stats      = JaxStats(time=0.8947453219998351)
        system     = LinearSystem(
  structure=Structure(full_flat=f64[78](jax)),
  _flatten=True,
  _jit=True,
  _kwargs={},
  _timer=True...JitWrapper at 0x7fe4cdba58b0>,
  _rpreconditioner_wrapped=<function Inverse.adjoint_inner.<locals>.preconditioner_fn>
)
#x1B[1m#x1B[31m.venv/lib/python3.12.../linalg/jax/_cg.py#x1B[0m:17: in _wrapped
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m jax.scipy.sparse.linalg.cg(*args, **kwargs)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (<FunctionWrapper at 0x7fe4c3919070 for _JitWrapper at 0x7fe4cdbca960>, Array([ 0.01594995, -0.10249996,  0.24659164, ...0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64))
        kwargs     = {'M': <FunctionWrapper at 0x7fe4c391b0d0 for _JitWrapper at 0x7fe4cdba58b0>, 'atol': Array(0., dtype=float64, weak_type=True), 'maxiter': 1000, 'tol': Array(1.e-05, dtype=float64, weak_type=True)}
        self       = JaxCG(
  max_steps=1000,
  atol=Array(0., dtype=float64, weak_type=True),
  rtol=Array(0.001, dtype=float64, weak_type...
  atol_primary=Array(0., dtype=float64, weak_type=True),
  rtol_primary=Array(1.e-05, dtype=float64, weak_type=True)
)
#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/sparse/linalg.py#x1B[0m:286: in cg
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m _isolve(_cg_solve,#x1B[90m#x1B[39;49;00m
        A          = <FunctionWrapper at 0x7fe4c3919070 for _JitWrapper at 0x7fe4cdbca960>
        M          = <FunctionWrapper at 0x7fe4c391b0d0 for _JitWrapper at 0x7fe4cdba58b0>
        atol       = Array(0., dtype=float64, weak_type=True)
        b          = Array([ 0.01594995, -0.10249996,  0.24659164, -0.23300368, -0.10424362,
        0.04610791, -0.30216865, -0.22086146, ...    , -0.        , -0.        , -0.        , -0.        ,
       -0.        , -0.        , -0.        ], dtype=float64)
        maxiter    = 1000
        tol        = Array(1.e-05, dtype=float64, weak_type=True)
        x0         = Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ... 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

_isolve_solve = <function _cg_solve at 0x7fe4c32a4f40>
A = <FunctionWrapper at 0x7fe4c3919070 for _JitWrapper at 0x7fe4cdbca960>
b = Array([ 0.01594995, -0.10249996,  0.24659164, -0.23300368, -0.10424362,
        0.04610791, -0.30216865, -0.22086146, ...    , -0.        , -0.        , -0.        , -0.        ,
       -0.        , -0.        , -0.        ], dtype=float64)
x0 = Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ... 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64)

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92m_isolve#x1B[39;49;00m(_isolve_solve, A, b, x0=#x1B[94mNone#x1B[39;49;00m, *, tol=#x1B[94m1e-5#x1B[39;49;00m, atol=#x1B[94m0.0#x1B[39;49;00m,#x1B[90m#x1B[39;49;00m
                maxiter=#x1B[94mNone#x1B[39;49;00m, M=#x1B[94mNone#x1B[39;49;00m, check_symmetric=#x1B[94mFalse#x1B[39;49;00m):#x1B[90m#x1B[39;49;00m
      #x1B[94mif#x1B[39;49;00m x0 #x1B[95mis#x1B[39;49;00m #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
        x0 = tree_map(jnp.zeros_like, b)#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
      b, x0 = api.device_put((b, x0))#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
      #x1B[94mif#x1B[39;49;00m maxiter #x1B[95mis#x1B[39;49;00m #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
        size = #x1B[96msum#x1B[39;49;00m(bi.size #x1B[94mfor#x1B[39;49;00m bi #x1B[95min#x1B[39;49;00m tree_leaves(b))#x1B[90m#x1B[39;49;00m
        maxiter = #x1B[94m10#x1B[39;49;00m * size  #x1B[90m# copied from scipy#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
      #x1B[94mif#x1B[39;49;00m M #x1B[95mis#x1B[39;49;00m #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
        M = _identity#x1B[90m#x1B[39;49;00m
      A = _normalize_matvec(A)#x1B[90m#x1B[39;49;00m
      M = _normalize_matvec(M)#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
      #x1B[94mif#x1B[39;49;00m tree_structure(x0) != tree_structure(b):#x1B[90m#x1B[39;49;00m
        #x1B[94mraise#x1B[39;49;00m #x1B[96mValueError#x1B[39;49;00m(#x1B[90m#x1B[39;49;00m
            #x1B[33m'#x1B[39;49;00m#x1B[33mx0 and b must have matching tree structure: #x1B[39;49;00m#x1B[33m'#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
            #x1B[33mf#x1B[39;49;00m#x1B[33m'#x1B[39;49;00m#x1B[33m{#x1B[39;49;00mtree_structure(x0)#x1B[33m}#x1B[39;49;00m#x1B[33m vs #x1B[39;49;00m#x1B[33m{#x1B[39;49;00mtree_structure(b)#x1B[33m}#x1B[39;49;00m#x1B[33m'#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
      #x1B[94mif#x1B[39;49;00m _shapes(x0) != _shapes(b):#x1B[90m#x1B[39;49;00m
        #x1B[94mraise#x1B[39;49;00m #x1B[96mValueError#x1B[39;49;00m(#x1B[90m#x1B[39;49;00m
            #x1B[33m'#x1B[39;49;00m#x1B[33marrays in x0 and b must have matching shapes: #x1B[39;49;00m#x1B[33m'#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
            #x1B[33mf#x1B[39;49;00m#x1B[33m'#x1B[39;49;00m#x1B[33m{#x1B[39;49;00m_shapes(x0)#x1B[33m}#x1B[39;49;00m#x1B[33m vs #x1B[39;49;00m#x1B[33m{#x1B[39;49;00m_shapes(b)#x1B[33m}#x1B[39;49;00m#x1B[33m'#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
      isolve_solve = partial(#x1B[90m#x1B[39;49;00m
          _isolve_solve, x0=x0, tol=tol, atol=atol, maxiter=maxiter, M=M)#x1B[90m#x1B[39;49;00m
    #x1B[90m#x1B[39;49;00m
      #x1B[90m# real-valued positive-definite linear operators are symmetric#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mreal_valued#x1B[39;49;00m(x):#x1B[90m#x1B[39;49;00m
        #x1B[94mreturn#x1B[39;49;00m #x1B[95mnot#x1B[39;49;00m #x1B[96missubclass#x1B[39;49;00m(x.dtype.type, np.complexfloating)#x1B[90m#x1B[39;49;00m
      symmetric = #x1B[96mall#x1B[39;49;00m(#x1B[96mmap#x1B[39;49;00m(real_valued, tree_leaves(b))) \
        #x1B[94mif#x1B[39;49;00m check_symmetric #x1B[94melse#x1B[39;49;00m #x1B[94mFalse#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
>     x = lax.custom_linear_solve(#x1B[90m#x1B[39;49;00m
          A, b, solve=isolve_solve, transpose_solve=isolve_solve,#x1B[90m#x1B[39;49;00m
          symmetric=symmetric)#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE     jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_825 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE     --------------------#x1B[0m
#x1B[1m#x1B[31mE     For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m

A          = <FunctionWrapper at 0x7fe4c3919070 for _JitWrapper at 0x7fe4cdbca960>
M          = <FunctionWrapper at 0x7fe4c391b0d0 for _JitWrapper at 0x7fe4cdba58b0>
_isolve_solve = <function _cg_solve at 0x7fe4c32a4f40>
atol       = Array(0., dtype=float64, weak_type=True)
b          = Array([ 0.01594995, -0.10249996,  0.24659164, -0.23300368, -0.10424362,
        0.04610791, -0.30216865, -0.22086146, ...    , -0.        , -0.        , -0.        , -0.        ,
       -0.        , -0.        , -0.        ], dtype=float64)
check_symmetric = True
isolve_solve = functools.partial(<function _cg_solve at 0x7fe4c32a4f40>, x0=Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.... dtype=float64, weak_type=True), maxiter=1000, M=<FunctionWrapper at 0x7fe4c391b0d0 for _JitWrapper at 0x7fe4cdba58b0>)
maxiter    = 1000
real_valued = <function _isolve.<locals>.real_valued at 0x7fe4c32a49a0>
symmetric  = True
tol        = Array(1.e-05, dtype=float64, weak_type=True)
x0         = Array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., ... 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
       0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], dtype=float64)

#x1B[1m#x1B[31m.venv/lib/python3.12.../scipy/sparse/linalg.py#x1B[0m:226: JaxRuntimeError
tests/warp/energies/elastic/hyperelastic/test_arap.py::test_arap_hess_prod

Flake rate in main: 66.67% (Passed 19 times, Failed 38 times)

Stack Traces | 63.5s run time
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
mesh = UnstructuredGrid (0x7fe51d71a020)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   2

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(seed=testing.seed())#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_arap_hess_prod#x1B[39;49;00m(seed: #x1B[96mint#x1B[39;49;00m, model: Model, mesh: pv.UnstructuredGrid) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
                   ^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe52c1b4400>
mesh       = UnstructuredGrid (0x7fe51d71a020)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   2
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)

#x1B[1m#x1B[.../elastic/hyperelastic/test_arap.py#x1B[0m:59: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../elastic/hyperelastic/test_arap.py#x1B[0m:60: in test_arap_hess_prod
    #x1B[0mcommon.check_hess_prod(seed, model, mesh)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe51d71a020)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   2
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
#x1B[1m#x1B[.../elastic/hyperelastic/common.py#x1B[0m:55: in check_hess_prod
    #x1B[0mtesting.check_jvp(model.grad, model.hess_prod, u, rtol=#x1B[94m1e-3#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe51d71a020)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   2
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../apple/model/_model.py#x1B[0m:117: in hess_prod
    #x1B[0moutput_wp: Full = #x1B[96mself#x1B[39;49;00m.warp.hess_prod(u_full, p_full)#x1B[90m#x1B[39;49;00m
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        output_jax = Array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float64)
        p          = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        p_full     = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        self       = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
        u_full     = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../warp/model/_adapter.py#x1B[0m:60: in hess_prod
    #x1B[0m(output,) = #x1B[96mself#x1B[39;49;00m._hess_prod_callable(u, p, output_dims=u.shape)#x1B[90m#x1B[39;49;00m
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        p          = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        self       = WarpModelAdapter(
  wrapped=WarpModel(
    energies={
      'elastic':
      Arap(
        id='elastic',
        requi...1,), dtype=float64),
               ),
        clamp_hess_diag=False,
        clamp_hess_quad=False
      )
    }
  )
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../_src/jax_experimental/ffi.py#x1B[0m:640: in __call__
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m call(*args, call_id=call_id)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        call       = <function ffi_call.<locals>.wrapped at 0x7fe4d7979120>
        call_id    = 0
        d          = 0
        device     = 'cpu'
        i          = 1
        input_arg  = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4da06a240>
        input_value = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        module     = <warp._src.context.Module object at 0x7fe51c33b650>
        num_inputs = 2
        out_types  = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        output_arg = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4da069160>
        output_dims = (4, 3)
        self       = <warp._src.jax_experimental.ffi.FfiCallable object at 0x7fe4da069070>
        static_inputs = {}
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/ffi.py#x1B[0m:540: in wrapped
    #x1B[0mresults = ffi_call_p.bind(#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        custom_call_api_version = 4
        has_side_effect = False
        in_avals   = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        input_layouts = None
        input_output_aliases = {}
        kwargs     = {'call_id': 0}
        legacy_backend_config = None
        multiple_results = True
        output_layouts_ = None
        result_avals = (ShapedArray(float64[4,3]),)
        result_shape_dtypes = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        static_input_layouts = ((1, 0), (1, 0))
        static_input_output_aliases = ()
        static_output_layouts = ((1, 0),)
        target_name = 'WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_100'
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:633: in bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m._true_bind(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:649: in _true_bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m.bind_with_trace(prev_trace, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        arg        = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        prev_trace = EvalTrace
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:661: in bind_with_trace
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m trace.process_primitive(#x1B[96mself#x1B[39;49;00m, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        in_type    = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
        trace      = EvalTrace
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:1210: in process_primitive
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m primitive.impl(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        primitive  = ffi_call
        self       = EvalTrace
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

prim = ffi_call
args = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
params = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
fun = <PjitFunction of <function ffi_call at 0x7fe4d7978180>>
prev = <object object at 0x7fe588c97b00>

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mapply_primitive#x1B[39;49;00m(prim, *args, **params):#x1B[90m#x1B[39;49;00m
    #x1B[90m  #x1B[39;49;00m#x1B[33m"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      fun = xla_primitive_callable(prim, **params)#x1B[90m#x1B[39;49;00m
      #x1B[90m# TODO(yashkatariya): Investigate adding is_primitive to jit and never#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[90m# triggering the disable jit path instead of messing around with it here.#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      prev = config.disable_jit.swap_local(#x1B[94mFalse#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
      #x1B[94mtry#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
>       outs = fun(*args)#x1B[90m#x1B[39;49;00m
               ^^^^^^^^^^#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_100 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE       --------------------#x1B[0m
#x1B[1m#x1B[31mE       For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_arap_hess_prod(#x1B[0m
#x1B[1m#x1B[31mE           model=Model(dirichlet=Dirichlet(dim=3,#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_index=Array([], shape=(0,), dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_value=Array([], shape=(0,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE             free_index=Array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             n_points=4),#x1B[0m
#x1B[1m#x1B[31mE            u_full=Array([[-0.23030316,  0.4469279 , -1.00805308],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.05685429,  0.38357654,  1.17551652],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.32433812, -0.93279542,  0.88309023],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.2684392 ,  0.67174205, -1.042468  ]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            jax=JaxModel(energies={}),#x1B[0m
#x1B[1m#x1B[31mE            warp=WarpModelAdapter(wrapped=WarpModel(dim=3,#x1B[0m
#x1B[1m#x1B[31mE              energies={'elastic': Arap(id='elastic',#x1B[0m
#x1B[1m#x1B[31mE                requires_grad=['mu'],#x1B[0m
#x1B[1m#x1B[31mE                cells=array(shape=(1,), dtype=vec4i),#x1B[0m
#x1B[1m#x1B[31mE                dhdX=array(shape=(1, 1), dtype=mat43(d)),#x1B[0m
#x1B[1m#x1B[31mE                dV=array(shape=(1, 1), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                params=Arap__Params(#x1B[0m
#x1B[1m#x1B[31mE                	mu=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                ),#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_diag=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_quad=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_lambda=False)})),#x1B[0m
#x1B[1m#x1B[31mE            edges_length_mean=Array(0.99999998, dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            frozen=False),#x1B[0m
#x1B[1m#x1B[31mE           mesh=UnstructuredGrid (0x7fe51d71a020)#x1B[0m
#x1B[1m#x1B[31mE             N Cells:    1#x1B[0m
#x1B[1m#x1B[31mE             N Points:   4#x1B[0m
#x1B[1m#x1B[31mE             X Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Y Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Z Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             N Arrays:   2,#x1B[0m
#x1B[1m#x1B[31mE           seed=0,  # or any other generated value#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEA') as a decorator on your test case#x1B[0m

args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
fun        = <PjitFunction of <function ffi_call at 0x7fe4d7978180>>
params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
prev       = <object object at 0x7fe588c97b00>
prim       = ffi_call

#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/dispatch.py#x1B[0m:91: JaxRuntimeError
tests/warp/energies/elastic/hyperelastic/test_arap.py::test_arap_hess_quad

Flake rate in main: 66.67% (Passed 19 times, Failed 38 times)

Stack Traces | 63.6s run time
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
mesh = UnstructuredGrid (0x7fe51d71a020)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   2

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(seed=testing.seed())#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_arap_hess_quad#x1B[39;49;00m(seed: #x1B[96mint#x1B[39;49;00m, model: Model, mesh: pv.UnstructuredGrid) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
                   ^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe52c1b4860>
mesh       = UnstructuredGrid (0x7fe51d71a020)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   2
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)

#x1B[1m#x1B[.../elastic/hyperelastic/test_arap.py#x1B[0m:64: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../elastic/hyperelastic/test_arap.py#x1B[0m:65: in test_arap_hess_quad
    #x1B[0mcommon.check_hess_quad(seed, model, mesh)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe51d71a020)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   2
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
#x1B[1m#x1B[.../elastic/hyperelastic/common.py#x1B[0m:62: in check_hess_quad
    #x1B[0mexpected: Scalar = jnp.vdot(p, model.hess_prod(u, p))#x1B[90m#x1B[39;49;00m
                                   ^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        actual     = Array(0.47826379, dtype=float64)
        mesh       = UnstructuredGrid (0x7fe51d71a020)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   2
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        seed       = 0
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../apple/model/_model.py#x1B[0m:117: in hess_prod
    #x1B[0moutput_wp: Full = #x1B[96mself#x1B[39;49;00m.warp.hess_prod(u_full, p_full)#x1B[90m#x1B[39;49;00m
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        output_jax = Array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float64)
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        p_full     = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        self       = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
        u_full     = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../warp/model/_adapter.py#x1B[0m:60: in hess_prod
    #x1B[0m(output,) = #x1B[96mself#x1B[39;49;00m._hess_prod_callable(u, p, output_dims=u.shape)#x1B[90m#x1B[39;49;00m
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        self       = WarpModelAdapter(
  wrapped=WarpModel(
    energies={
      'elastic':
      Arap(
        id='elastic',
        requi...1,), dtype=float64),
               ),
        clamp_hess_diag=False,
        clamp_hess_quad=False
      )
    }
  )
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../_src/jax_experimental/ffi.py#x1B[0m:640: in __call__
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m call(*args, call_id=call_id)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        call       = <function ffi_call.<locals>.wrapped at 0x7fe4d73b2020>
        call_id    = 0
        d          = 0
        device     = 'cpu'
        i          = 1
        input_arg  = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d74949e0>
        input_value = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        module     = <warp._src.context.Module object at 0x7fe51c33b650>
        num_inputs = 2
        out_types  = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        output_arg = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d7494e30>
        output_dims = (4, 3)
        self       = <warp._src.jax_experimental.ffi.FfiCallable object at 0x7fe4d7494e60>
        static_inputs = {}
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/ffi.py#x1B[0m:540: in wrapped
    #x1B[0mresults = ffi_call_p.bind(#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        custom_call_api_version = 4
        has_side_effect = False
        in_avals   = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        input_layouts = None
        input_output_aliases = {}
        kwargs     = {'call_id': 0}
        legacy_backend_config = None
        multiple_results = True
        output_layouts_ = None
        result_avals = (ShapedArray(float64[4,3]),)
        result_shape_dtypes = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        static_input_layouts = ((1, 0), (1, 0))
        static_input_output_aliases = ()
        static_output_layouts = ((1, 0),)
        target_name = 'WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_197'
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:633: in bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m._true_bind(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:649: in _true_bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m.bind_with_trace(prev_trace, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        arg        = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        prev_trace = EvalTrace
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:661: in bind_with_trace
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m trace.process_primitive(#x1B[96mself#x1B[39;49;00m, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        in_type    = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
        trace      = EvalTrace
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:1210: in process_primitive
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m primitive.impl(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        primitive  = ffi_call
        self       = EvalTrace
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

prim = ffi_call
args = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
params = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
fun = <PjitFunction of <function ffi_call at 0x7fe4d73b1ee0>>
prev = <object object at 0x7fe588c97b00>

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mapply_primitive#x1B[39;49;00m(prim, *args, **params):#x1B[90m#x1B[39;49;00m
    #x1B[90m  #x1B[39;49;00m#x1B[33m"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      fun = xla_primitive_callable(prim, **params)#x1B[90m#x1B[39;49;00m
      #x1B[90m# TODO(yashkatariya): Investigate adding is_primitive to jit and never#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[90m# triggering the disable jit path instead of messing around with it here.#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      prev = config.disable_jit.swap_local(#x1B[94mFalse#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
      #x1B[94mtry#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
>       outs = fun(*args)#x1B[90m#x1B[39;49;00m
               ^^^^^^^^^^#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_197 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE       --------------------#x1B[0m
#x1B[1m#x1B[31mE       For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_arap_hess_quad(#x1B[0m
#x1B[1m#x1B[31mE           model=Model(dirichlet=Dirichlet(dim=3,#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_index=Array([], shape=(0,), dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_value=Array([], shape=(0,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE             free_index=Array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             n_points=4),#x1B[0m
#x1B[1m#x1B[31mE            u_full=Array([[ 0.47874223, -0.38700476,  0.24528764],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.38609176, -0.17329485,  0.90024778],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.81725247, -0.63050376, -0.88730332],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.96864485, -0.64144405, -1.07241723]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            jax=JaxModel(energies={}),#x1B[0m
#x1B[1m#x1B[31mE            warp=WarpModelAdapter(wrapped=WarpModel(dim=3,#x1B[0m
#x1B[1m#x1B[31mE              energies={'elastic': Arap(id='elastic',#x1B[0m
#x1B[1m#x1B[31mE                requires_grad=['mu'],#x1B[0m
#x1B[1m#x1B[31mE                cells=array(shape=(1,), dtype=vec4i),#x1B[0m
#x1B[1m#x1B[31mE                dhdX=array(shape=(1, 1), dtype=mat43(d)),#x1B[0m
#x1B[1m#x1B[31mE                dV=array(shape=(1, 1), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                params=Arap__Params(#x1B[0m
#x1B[1m#x1B[31mE                	mu=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                ),#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_diag=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_quad=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_lambda=False)})),#x1B[0m
#x1B[1m#x1B[31mE            edges_length_mean=Array(0.99999998, dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            frozen=False),#x1B[0m
#x1B[1m#x1B[31mE           mesh=UnstructuredGrid (0x7fe51d71a020)#x1B[0m
#x1B[1m#x1B[31mE             N Cells:    1#x1B[0m
#x1B[1m#x1B[31mE             N Points:   4#x1B[0m
#x1B[1m#x1B[31mE             X Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Y Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Z Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             N Arrays:   2,#x1B[0m
#x1B[1m#x1B[31mE           seed=0,  # or any other generated value#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEA') as a decorator on your test case#x1B[0m

args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
fun        = <PjitFunction of <function ffi_call at 0x7fe4d73b1ee0>>
params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
prev       = <object object at 0x7fe588c97b00>
prim       = ffi_call

#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/dispatch.py#x1B[0m:91: JaxRuntimeError
tests/warp/energies/elastic/hyperelastic/test_arap_muscle.py::test_arap_muscle_hess_prod

Flake rate in main: 71.15% (Passed 15 times, Failed 37 times)

Stack Traces | 65.6s run time
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
mesh = UnstructuredGrid (0x7fe4cd3d37c0)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(seed=testing.seed())#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_arap_muscle_hess_prod#x1B[39;49;00m(#x1B[90m#x1B[39;49;00m
                   ^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        seed: #x1B[96mint#x1B[39;49;00m, model: Model, mesh: pv.UnstructuredGrid#x1B[90m#x1B[39;49;00m
    ) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe52c1b6480>
mesh       = UnstructuredGrid (0x7fe4cd3d37c0)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)

#x1B[1m#x1B[.../elastic/hyperelastic/test_arap_muscle.py#x1B[0m:64: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../elastic/hyperelastic/test_arap_muscle.py#x1B[0m:67: in test_arap_muscle_hess_prod
    #x1B[0mcommon.check_hess_prod(seed, model, mesh)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4cd3d37c0)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
#x1B[1m#x1B[.../elastic/hyperelastic/common.py#x1B[0m:55: in check_hess_prod
    #x1B[0mtesting.check_jvp(model.grad, model.hess_prod, u, rtol=#x1B[94m1e-3#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4cd3d37c0)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../apple/model/_model.py#x1B[0m:117: in hess_prod
    #x1B[0moutput_wp: Full = #x1B[96mself#x1B[39;49;00m.warp.hess_prod(u_full, p_full)#x1B[90m#x1B[39;49;00m
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        output_jax = Array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float64)
        p          = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        p_full     = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        self       = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
        u_full     = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../warp/model/_adapter.py#x1B[0m:60: in hess_prod
    #x1B[0m(output,) = #x1B[96mself#x1B[39;49;00m._hess_prod_callable(u, p, output_dims=u.shape)#x1B[90m#x1B[39;49;00m
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        p          = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        self       = WarpModelAdapter(
  wrapped=WarpModel(
    energies={
      'elastic':
      ArapMuscle(
        id='elastic',
       ...1,), dtype=float64),
               ),
        clamp_hess_diag=False,
        clamp_hess_quad=False
      )
    }
  )
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../_src/jax_experimental/ffi.py#x1B[0m:640: in __call__
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m call(*args, call_id=call_id)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        call       = <function ffi_call.<locals>.wrapped at 0x7fe4d4219080>
        call_id    = 0
        d          = 0
        device     = 'cpu'
        i          = 1
        input_arg  = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d75050d0>
        input_value = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        module     = <warp._src.context.Module object at 0x7fe51c33b650>
        num_inputs = 2
        out_types  = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        output_arg = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4cdd7d3d0>
        output_dims = (4, 3)
        self       = <warp._src.jax_experimental.ffi.FfiCallable object at 0x7fe4d7506150>
        static_inputs = {}
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/ffi.py#x1B[0m:540: in wrapped
    #x1B[0mresults = ffi_call_p.bind(#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        custom_call_api_version = 4
        has_side_effect = False
        in_avals   = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        input_layouts = None
        input_output_aliases = {}
        kwargs     = {'call_id': 0}
        legacy_backend_config = None
        multiple_results = True
        output_layouts_ = None
        result_avals = (ShapedArray(float64[4,3]),)
        result_shape_dtypes = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        static_input_layouts = ((1, 0), (1, 0))
        static_input_output_aliases = ()
        static_output_layouts = ((1, 0),)
        target_name = 'WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_507'
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:633: in bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m._true_bind(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:649: in _true_bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m.bind_with_trace(prev_trace, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        arg        = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        prev_trace = EvalTrace
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:661: in bind_with_trace
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m trace.process_primitive(#x1B[96mself#x1B[39;49;00m, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        in_type    = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
        trace      = EvalTrace
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:1210: in process_primitive
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m primitive.impl(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        primitive  = ffi_call
        self       = EvalTrace
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

prim = ffi_call
args = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
params = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
fun = <PjitFunction of <function ffi_call at 0x7fe4d4219120>>
prev = <object object at 0x7fe588c97b00>

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mapply_primitive#x1B[39;49;00m(prim, *args, **params):#x1B[90m#x1B[39;49;00m
    #x1B[90m  #x1B[39;49;00m#x1B[33m"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      fun = xla_primitive_callable(prim, **params)#x1B[90m#x1B[39;49;00m
      #x1B[90m# TODO(yashkatariya): Investigate adding is_primitive to jit and never#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[90m# triggering the disable jit path instead of messing around with it here.#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      prev = config.disable_jit.swap_local(#x1B[94mFalse#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
      #x1B[94mtry#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
>       outs = fun(*args)#x1B[90m#x1B[39;49;00m
               ^^^^^^^^^^#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_507 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE       --------------------#x1B[0m
#x1B[1m#x1B[31mE       For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_arap_muscle_hess_prod(#x1B[0m
#x1B[1m#x1B[31mE           model=Model(dirichlet=Dirichlet(dim=3,#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_index=Array([], shape=(0,), dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_value=Array([], shape=(0,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE             free_index=Array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             n_points=4),#x1B[0m
#x1B[1m#x1B[31mE            u_full=Array([[-1.19693091,  0.13856566,  1.22283071],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.5109477 ,  0.2886049 ,  0.25589075],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.31821538, -0.3961438 , -0.7275457 ],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.93225488, -0.42896687,  0.04529193]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            jax=JaxModel(energies={}),#x1B[0m
#x1B[1m#x1B[31mE            warp=WarpModelAdapter(wrapped=WarpModel(dim=3,#x1B[0m
#x1B[1m#x1B[31mE              energies={'elastic': ArapMuscle(id='elastic',#x1B[0m
#x1B[1m#x1B[31mE                requires_grad=['activation', 'mu'],#x1B[0m
#x1B[1m#x1B[31mE                cells=array(shape=(1,), dtype=vec4i),#x1B[0m
#x1B[1m#x1B[31mE                dhdX=array(shape=(1, 1), dtype=mat43(d)),#x1B[0m
#x1B[1m#x1B[31mE                dV=array(shape=(1, 1), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                params=ArapMuscle__Params(#x1B[0m
#x1B[1m#x1B[31mE                	activation=array(shape=(1,), dtype=vector(length=6, dtype=float64)),#x1B[0m
#x1B[1m#x1B[31mE                	mu=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                ),#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_diag=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_quad=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_lambda=False)})),#x1B[0m
#x1B[1m#x1B[31mE            edges_length_mean=Array(0.99999998, dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            frozen=False),#x1B[0m
#x1B[1m#x1B[31mE           mesh=UnstructuredGrid (0x7fe4cd3d37c0)#x1B[0m
#x1B[1m#x1B[31mE             N Cells:    1#x1B[0m
#x1B[1m#x1B[31mE             N Points:   4#x1B[0m
#x1B[1m#x1B[31mE             X Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Y Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Z Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             N Arrays:   3,#x1B[0m
#x1B[1m#x1B[31mE           seed=0,  # or any other generated value#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEA') as a decorator on your test case#x1B[0m

args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
fun        = <PjitFunction of <function ffi_call at 0x7fe4d4219120>>
params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
prev       = <object object at 0x7fe588c97b00>
prim       = ffi_call

#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/dispatch.py#x1B[0m:91: JaxRuntimeError
tests/warp/energies/elastic/hyperelastic/test_arap_muscle.py::test_arap_muscle_hess_quad

Flake rate in main: 71.15% (Passed 15 times, Failed 37 times)

Stack Traces | 76.3s run time
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
mesh = UnstructuredGrid (0x7fe4cd3d37c0)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(seed=testing.seed())#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_arap_muscle_hess_quad#x1B[39;49;00m(#x1B[90m#x1B[39;49;00m
                   ^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        seed: #x1B[96mint#x1B[39;49;00m, model: Model, mesh: pv.UnstructuredGrid#x1B[90m#x1B[39;49;00m
    ) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe52c1b68e0>
mesh       = UnstructuredGrid (0x7fe4cd3d37c0)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)

#x1B[1m#x1B[.../elastic/hyperelastic/test_arap_muscle.py#x1B[0m:71: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../elastic/hyperelastic/test_arap_muscle.py#x1B[0m:74: in test_arap_muscle_hess_quad
    #x1B[0mcommon.check_hess_quad(seed, model, mesh)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4cd3d37c0)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
#x1B[1m#x1B[.../elastic/hyperelastic/common.py#x1B[0m:62: in check_hess_quad
    #x1B[0mexpected: Scalar = jnp.vdot(p, model.hess_prod(u, p))#x1B[90m#x1B[39;49;00m
                                   ^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        actual     = Array(0.12875239, dtype=float64)
        mesh       = UnstructuredGrid (0x7fe4cd3d37c0)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        seed       = 0
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../apple/model/_model.py#x1B[0m:117: in hess_prod
    #x1B[0moutput_wp: Full = #x1B[96mself#x1B[39;49;00m.warp.hess_prod(u_full, p_full)#x1B[90m#x1B[39;49;00m
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        output_jax = Array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float64)
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        p_full     = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        self       = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
        u_full     = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../warp/model/_adapter.py#x1B[0m:60: in hess_prod
    #x1B[0m(output,) = #x1B[96mself#x1B[39;49;00m._hess_prod_callable(u, p, output_dims=u.shape)#x1B[90m#x1B[39;49;00m
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        self       = WarpModelAdapter(
  wrapped=WarpModel(
    energies={
      'elastic':
      ArapMuscle(
        id='elastic',
       ...1,), dtype=float64),
               ),
        clamp_hess_diag=False,
        clamp_hess_quad=False
      )
    }
  )
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../_src/jax_experimental/ffi.py#x1B[0m:640: in __call__
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m call(*args, call_id=call_id)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        call       = <function ffi_call.<locals>.wrapped at 0x7fe4cd3e6de0>
        call_id    = 0
        d          = 0
        device     = 'cpu'
        i          = 1
        input_arg  = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4cc52e8d0>
        input_value = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        module     = <warp._src.context.Module object at 0x7fe51c33b650>
        num_inputs = 2
        out_types  = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        output_arg = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4cc52ed80>
        output_dims = (4, 3)
        self       = <warp._src.jax_experimental.ffi.FfiCallable object at 0x7fe4cc52d850>
        static_inputs = {}
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/ffi.py#x1B[0m:540: in wrapped
    #x1B[0mresults = ffi_call_p.bind(#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        custom_call_api_version = 4
        has_side_effect = False
        in_avals   = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        input_layouts = None
        input_output_aliases = {}
        kwargs     = {'call_id': 0}
        legacy_backend_config = None
        multiple_results = True
        output_layouts_ = None
        result_avals = (ShapedArray(float64[4,3]),)
        result_shape_dtypes = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        static_input_layouts = ((1, 0), (1, 0))
        static_input_output_aliases = ()
        static_output_layouts = ((1, 0),)
        target_name = 'WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_613'
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:633: in bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m._true_bind(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:649: in _true_bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m.bind_with_trace(prev_trace, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        arg        = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        prev_trace = EvalTrace
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:661: in bind_with_trace
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m trace.process_primitive(#x1B[96mself#x1B[39;49;00m, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        in_type    = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
        trace      = EvalTrace
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:1210: in process_primitive
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m primitive.impl(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        primitive  = ffi_call
        self       = EvalTrace
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

prim = ffi_call
args = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
params = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
fun = <PjitFunction of <function ffi_call at 0x7fe4cd3e7740>>
prev = <object object at 0x7fe588c97b00>

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mapply_primitive#x1B[39;49;00m(prim, *args, **params):#x1B[90m#x1B[39;49;00m
    #x1B[90m  #x1B[39;49;00m#x1B[33m"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      fun = xla_primitive_callable(prim, **params)#x1B[90m#x1B[39;49;00m
      #x1B[90m# TODO(yashkatariya): Investigate adding is_primitive to jit and never#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[90m# triggering the disable jit path instead of messing around with it here.#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      prev = config.disable_jit.swap_local(#x1B[94mFalse#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
      #x1B[94mtry#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
>       outs = fun(*args)#x1B[90m#x1B[39;49;00m
               ^^^^^^^^^^#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_613 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE       --------------------#x1B[0m
#x1B[1m#x1B[31mE       For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_arap_muscle_hess_quad(#x1B[0m
#x1B[1m#x1B[31mE           model=Model(dirichlet=Dirichlet(dim=3,#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_index=Array([], shape=(0,), dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_value=Array([], shape=(0,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE             free_index=Array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             n_points=4),#x1B[0m
#x1B[1m#x1B[31mE            u_full=Array([[-0.76655026, -0.62556086,  0.68767497],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.28233729, -0.69772602, -0.37828513],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.04823423, -1.03855213,  0.95418263],#x1B[0m
#x1B[1m#x1B[31mE                   [ 1.07699311,  0.54753535, -0.98902473]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            jax=JaxModel(energies={}),#x1B[0m
#x1B[1m#x1B[31mE            warp=WarpModelAdapter(wrapped=WarpModel(dim=3,#x1B[0m
#x1B[1m#x1B[31mE              energies={'elastic': ArapMuscle(id='elastic',#x1B[0m
#x1B[1m#x1B[31mE                requires_grad=['activation', 'mu'],#x1B[0m
#x1B[1m#x1B[31mE                cells=array(shape=(1,), dtype=vec4i),#x1B[0m
#x1B[1m#x1B[31mE                dhdX=array(shape=(1, 1), dtype=mat43(d)),#x1B[0m
#x1B[1m#x1B[31mE                dV=array(shape=(1, 1), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                params=ArapMuscle__Params(#x1B[0m
#x1B[1m#x1B[31mE                	activation=array(shape=(1,), dtype=vector(length=6, dtype=float64)),#x1B[0m
#x1B[1m#x1B[31mE                	mu=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                ),#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_diag=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_quad=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_lambda=False)})),#x1B[0m
#x1B[1m#x1B[31mE            edges_length_mean=Array(0.99999998, dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            frozen=False),#x1B[0m
#x1B[1m#x1B[31mE           mesh=UnstructuredGrid (0x7fe4cd3d37c0)#x1B[0m
#x1B[1m#x1B[31mE             N Cells:    1#x1B[0m
#x1B[1m#x1B[31mE             N Points:   4#x1B[0m
#x1B[1m#x1B[31mE             X Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Y Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Z Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             N Arrays:   3,#x1B[0m
#x1B[1m#x1B[31mE           seed=0,  # or any other generated value#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEA') as a decorator on your test case#x1B[0m

args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
fun        = <PjitFunction of <function ffi_call at 0x7fe4cd3e7740>>
params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
prev       = <object object at 0x7fe588c97b00>
prim       = ffi_call

#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/dispatch.py#x1B[0m:91: JaxRuntimeError
tests/warp/energies/elastic/hyperelastic/test_arap_muscle_v2.py::test_arap_muscle_hess_prod

Flake rate in main: 100.00% (Passed 0 times, Failed 15 times)

Stack Traces | 63.2s run time
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
mesh = UnstructuredGrid (0x7fe4d785cd60)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(seed=testing.seed())#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_arap_muscle_hess_prod#x1B[39;49;00m(#x1B[90m#x1B[39;49;00m
                   ^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        seed: #x1B[96mint#x1B[39;49;00m, model: Model, mesh: pv.UnstructuredGrid#x1B[90m#x1B[39;49;00m
    ) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe52c25cae0>
mesh       = UnstructuredGrid (0x7fe4d785cd60)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)

#x1B[1m#x1B[.../elastic/hyperelastic/test_arap_muscle_v2.py#x1B[0m:64: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../elastic/hyperelastic/test_arap_muscle_v2.py#x1B[0m:67: in test_arap_muscle_hess_prod
    #x1B[0mcommon.check_hess_prod(seed, model, mesh)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4d785cd60)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
#x1B[1m#x1B[.../elastic/hyperelastic/common.py#x1B[0m:55: in check_hess_prod
    #x1B[0mtesting.check_jvp(model.grad, model.hess_prod, u, rtol=#x1B[94m1e-3#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4d785cd60)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../apple/model/_model.py#x1B[0m:117: in hess_prod
    #x1B[0moutput_wp: Full = #x1B[96mself#x1B[39;49;00m.warp.hess_prod(u_full, p_full)#x1B[90m#x1B[39;49;00m
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        output_jax = Array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float64)
        p          = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        p_full     = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        self       = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
        u_full     = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../warp/model/_adapter.py#x1B[0m:60: in hess_prod
    #x1B[0m(output,) = #x1B[96mself#x1B[39;49;00m._hess_prod_callable(u, p, output_dims=u.shape)#x1B[90m#x1B[39;49;00m
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        p          = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        self       = WarpModelAdapter(
  wrapped=WarpModel(
    energies={
      'elastic':
      ArapMuscleV2(
        id='elastic',
     ...1,), dtype=float64),
               ),
        clamp_hess_diag=False,
        clamp_hess_quad=False
      )
    }
  )
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../_src/jax_experimental/ffi.py#x1B[0m:640: in __call__
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m call(*args, call_id=call_id)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        call       = <function ffi_call.<locals>.wrapped at 0x7fe4d6c837e0>
        call_id    = 0
        d          = 0
        device     = 'cpu'
        i          = 1
        input_arg  = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d6adcad0>
        input_value = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        module     = <warp._src.context.Module object at 0x7fe51c33b650>
        num_inputs = 2
        out_types  = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        output_arg = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d6adee40>
        output_dims = (4, 3)
        self       = <warp._src.jax_experimental.ffi.FfiCallable object at 0x7fe4d6add3d0>
        static_inputs = {}
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/ffi.py#x1B[0m:540: in wrapped
    #x1B[0mresults = ffi_call_p.bind(#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        custom_call_api_version = 4
        has_side_effect = False
        in_avals   = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        input_layouts = None
        input_output_aliases = {}
        kwargs     = {'call_id': 0}
        legacy_backend_config = None
        multiple_results = True
        output_layouts_ = None
        result_avals = (ShapedArray(float64[4,3]),)
        result_shape_dtypes = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        static_input_layouts = ((1, 0), (1, 0))
        static_input_output_aliases = ()
        static_output_layouts = ((1, 0),)
        target_name = 'WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_299'
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:633: in bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m._true_bind(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:649: in _true_bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m.bind_with_trace(prev_trace, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        arg        = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        prev_trace = EvalTrace
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:661: in bind_with_trace
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m trace.process_primitive(#x1B[96mself#x1B[39;49;00m, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        in_type    = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
        trace      = EvalTrace
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:1210: in process_primitive
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m primitive.impl(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        primitive  = ffi_call
        self       = EvalTrace
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

prim = ffi_call
args = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
params = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
fun = <PjitFunction of <function ffi_call at 0x7fe4d6c83600>>
prev = <object object at 0x7fe588c97b00>

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mapply_primitive#x1B[39;49;00m(prim, *args, **params):#x1B[90m#x1B[39;49;00m
    #x1B[90m  #x1B[39;49;00m#x1B[33m"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      fun = xla_primitive_callable(prim, **params)#x1B[90m#x1B[39;49;00m
      #x1B[90m# TODO(yashkatariya): Investigate adding is_primitive to jit and never#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[90m# triggering the disable jit path instead of messing around with it here.#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      prev = config.disable_jit.swap_local(#x1B[94mFalse#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
      #x1B[94mtry#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
>       outs = fun(*args)#x1B[90m#x1B[39;49;00m
               ^^^^^^^^^^#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_299 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE       --------------------#x1B[0m
#x1B[1m#x1B[31mE       For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_arap_muscle_hess_prod(#x1B[0m
#x1B[1m#x1B[31mE           model=Model(dirichlet=Dirichlet(dim=3,#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_index=Array([], shape=(0,), dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_value=Array([], shape=(0,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE             free_index=Array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             n_points=4),#x1B[0m
#x1B[1m#x1B[31mE            u_full=Array([[-1.19693091,  0.13856566,  1.22283071],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.5109477 ,  0.2886049 ,  0.25589075],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.31821538, -0.3961438 , -0.7275457 ],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.93225488, -0.42896687,  0.04529193]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            jax=JaxModel(energies={}),#x1B[0m
#x1B[1m#x1B[31mE            warp=WarpModelAdapter(wrapped=WarpModel(dim=3,#x1B[0m
#x1B[1m#x1B[31mE              energies={'elastic': ArapMuscleV2(id='elastic',#x1B[0m
#x1B[1m#x1B[31mE                requires_grad=['activation', 'mu'],#x1B[0m
#x1B[1m#x1B[31mE                cells=array(shape=(1,), dtype=vec4i),#x1B[0m
#x1B[1m#x1B[31mE                dhdX=array(shape=(1, 1), dtype=mat43(d)),#x1B[0m
#x1B[1m#x1B[31mE                dV=array(shape=(1, 1), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                params=ArapMuscleV2__Params(#x1B[0m
#x1B[1m#x1B[31mE                	activation=array(shape=(1,), dtype=vector(length=6, dtype=float64)),#x1B[0m
#x1B[1m#x1B[31mE                	mu=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                ),#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_diag=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_quad=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_lambda=False)})),#x1B[0m
#x1B[1m#x1B[31mE            edges_length_mean=Array(0.99999998, dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            frozen=False),#x1B[0m
#x1B[1m#x1B[31mE           mesh=UnstructuredGrid (0x7fe4d785cd60)#x1B[0m
#x1B[1m#x1B[31mE             N Cells:    1#x1B[0m
#x1B[1m#x1B[31mE             N Points:   4#x1B[0m
#x1B[1m#x1B[31mE             X Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Y Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Z Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             N Arrays:   3,#x1B[0m
#x1B[1m#x1B[31mE           seed=0,  # or any other generated value#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEA') as a decorator on your test case#x1B[0m

args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
fun        = <PjitFunction of <function ffi_call at 0x7fe4d6c83600>>
params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
prev       = <object object at 0x7fe588c97b00>
prim       = ffi_call

#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/dispatch.py#x1B[0m:91: JaxRuntimeError
tests/warp/energies/elastic/hyperelastic/test_arap_muscle_v2.py::test_arap_muscle_hess_quad

Flake rate in main: 100.00% (Passed 0 times, Failed 15 times)

Stack Traces | 70.1s run time
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
mesh = UnstructuredGrid (0x7fe4d785cd60)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(seed=testing.seed())#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_arap_muscle_hess_quad#x1B[39;49;00m(#x1B[90m#x1B[39;49;00m
                   ^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        seed: #x1B[96mint#x1B[39;49;00m, model: Model, mesh: pv.UnstructuredGrid#x1B[90m#x1B[39;49;00m
    ) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe52c25cea0>
mesh       = UnstructuredGrid (0x7fe4d785cd60)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)

#x1B[1m#x1B[.../elastic/hyperelastic/test_arap_muscle_v2.py#x1B[0m:71: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../elastic/hyperelastic/test_arap_muscle_v2.py#x1B[0m:74: in test_arap_muscle_hess_quad
    #x1B[0mcommon.check_hess_quad(seed, model, mesh)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4d785cd60)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
#x1B[1m#x1B[.../elastic/hyperelastic/common.py#x1B[0m:62: in check_hess_quad
    #x1B[0mexpected: Scalar = jnp.vdot(p, model.hess_prod(u, p))#x1B[90m#x1B[39;49;00m
                                   ^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        actual     = Array(0.5856506, dtype=float64)
        mesh       = UnstructuredGrid (0x7fe4d785cd60)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   3
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        seed       = 0
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../apple/model/_model.py#x1B[0m:117: in hess_prod
    #x1B[0moutput_wp: Full = #x1B[96mself#x1B[39;49;00m.warp.hess_prod(u_full, p_full)#x1B[90m#x1B[39;49;00m
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        output_jax = Array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float64)
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        p_full     = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        self       = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
        u_full     = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../warp/model/_adapter.py#x1B[0m:60: in hess_prod
    #x1B[0m(output,) = #x1B[96mself#x1B[39;49;00m._hess_prod_callable(u, p, output_dims=u.shape)#x1B[90m#x1B[39;49;00m
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        self       = WarpModelAdapter(
  wrapped=WarpModel(
    energies={
      'elastic':
      ArapMuscleV2(
        id='elastic',
     ...1,), dtype=float64),
               ),
        clamp_hess_diag=False,
        clamp_hess_quad=False
      )
    }
  )
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../_src/jax_experimental/ffi.py#x1B[0m:640: in __call__
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m call(*args, call_id=call_id)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        call       = <function ffi_call.<locals>.wrapped at 0x7fe4ccc425c0>
        call_id    = 0
        d          = 0
        device     = 'cpu'
        i          = 1
        input_arg  = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d9798620>
        input_value = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        module     = <warp._src.context.Module object at 0x7fe51c33b650>
        num_inputs = 2
        out_types  = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        output_arg = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d979adb0>
        output_dims = (4, 3)
        self       = <warp._src.jax_experimental.ffi.FfiCallable object at 0x7fe4d9799fa0>
        static_inputs = {}
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/ffi.py#x1B[0m:540: in wrapped
    #x1B[0mresults = ffi_call_p.bind(#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        custom_call_api_version = 4
        has_side_effect = False
        in_avals   = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        input_layouts = None
        input_output_aliases = {}
        kwargs     = {'call_id': 0}
        legacy_backend_config = None
        multiple_results = True
        output_layouts_ = None
        result_avals = (ShapedArray(float64[4,3]),)
        result_shape_dtypes = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        static_input_layouts = ((1, 0), (1, 0))
        static_input_output_aliases = ()
        static_output_layouts = ((1, 0),)
        target_name = 'WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_405'
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:633: in bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m._true_bind(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:649: in _true_bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m.bind_with_trace(prev_trace, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        arg        = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        prev_trace = EvalTrace
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:661: in bind_with_trace
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m trace.process_primitive(#x1B[96mself#x1B[39;49;00m, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        in_type    = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
        trace      = EvalTrace
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:1210: in process_primitive
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m primitive.impl(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        primitive  = ffi_call
        self       = EvalTrace
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

prim = ffi_call
args = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
params = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
fun = <PjitFunction of <function ffi_call at 0x7fe4ccc42480>>
prev = <object object at 0x7fe588c97b00>

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mapply_primitive#x1B[39;49;00m(prim, *args, **params):#x1B[90m#x1B[39;49;00m
    #x1B[90m  #x1B[39;49;00m#x1B[33m"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      fun = xla_primitive_callable(prim, **params)#x1B[90m#x1B[39;49;00m
      #x1B[90m# TODO(yashkatariya): Investigate adding is_primitive to jit and never#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[90m# triggering the disable jit path instead of messing around with it here.#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      prev = config.disable_jit.swap_local(#x1B[94mFalse#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
      #x1B[94mtry#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
>       outs = fun(*args)#x1B[90m#x1B[39;49;00m
               ^^^^^^^^^^#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_405 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE       --------------------#x1B[0m
#x1B[1m#x1B[31mE       For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_arap_muscle_hess_quad(#x1B[0m
#x1B[1m#x1B[31mE           model=Model(dirichlet=Dirichlet(dim=3,#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_index=Array([], shape=(0,), dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_value=Array([], shape=(0,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE             free_index=Array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             n_points=4),#x1B[0m
#x1B[1m#x1B[31mE            u_full=Array([[-0.76655026, -0.62556086,  0.68767497],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.28233729, -0.69772602, -0.37828513],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.04823423, -1.03855213,  0.95418263],#x1B[0m
#x1B[1m#x1B[31mE                   [ 1.07699311,  0.54753535, -0.98902473]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            jax=JaxModel(energies={}),#x1B[0m
#x1B[1m#x1B[31mE            warp=WarpModelAdapter(wrapped=WarpModel(dim=3,#x1B[0m
#x1B[1m#x1B[31mE              energies={'elastic': ArapMuscleV2(id='elastic',#x1B[0m
#x1B[1m#x1B[31mE                requires_grad=['activation', 'mu'],#x1B[0m
#x1B[1m#x1B[31mE                cells=array(shape=(1,), dtype=vec4i),#x1B[0m
#x1B[1m#x1B[31mE                dhdX=array(shape=(1, 1), dtype=mat43(d)),#x1B[0m
#x1B[1m#x1B[31mE                dV=array(shape=(1, 1), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                params=ArapMuscleV2__Params(#x1B[0m
#x1B[1m#x1B[31mE                	activation=array(shape=(1,), dtype=vector(length=6, dtype=float64)),#x1B[0m
#x1B[1m#x1B[31mE                	mu=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                ),#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_diag=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_quad=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_lambda=False)})),#x1B[0m
#x1B[1m#x1B[31mE            edges_length_mean=Array(0.99999998, dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            frozen=False),#x1B[0m
#x1B[1m#x1B[31mE           mesh=UnstructuredGrid (0x7fe4d785cd60)#x1B[0m
#x1B[1m#x1B[31mE             N Cells:    1#x1B[0m
#x1B[1m#x1B[31mE             N Points:   4#x1B[0m
#x1B[1m#x1B[31mE             X Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Y Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Z Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             N Arrays:   3,#x1B[0m
#x1B[1m#x1B[31mE           seed=0,  # or any other generated value#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEA') as a decorator on your test case#x1B[0m

args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
fun        = <PjitFunction of <function ffi_call at 0x7fe4ccc42480>>
params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
prev       = <object object at 0x7fe588c97b00>
prim       = ffi_call

#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/dispatch.py#x1B[0m:91: JaxRuntimeError
tests/warp/energies/elastic/hyperelastic/test_phace.py::test_phace_hess_prod

Flake rate in main: 71.15% (Passed 15 times, Failed 37 times)

Stack Traces | 65s run time
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
mesh = UnstructuredGrid (0x7fe4cd858d00)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   5

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(seed=testing.seed())#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_phace_hess_prod#x1B[39;49;00m(seed: #x1B[96mint#x1B[39;49;00m, model: Model, mesh: pv.UnstructuredGrid) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
                   ^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe52c25ea20>
mesh       = UnstructuredGrid (0x7fe4cd858d00)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   5
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)

#x1B[1m#x1B[.../elastic/hyperelastic/test_phace.py#x1B[0m:62: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../elastic/hyperelastic/test_phace.py#x1B[0m:63: in test_phace_hess_prod
    #x1B[0mcommon.check_hess_prod(seed, model, mesh)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4cd858d00)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   5
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
#x1B[1m#x1B[.../elastic/hyperelastic/common.py#x1B[0m:55: in check_hess_prod
    #x1B[0mtesting.check_jvp(model.grad, model.hess_prod, u, rtol=#x1B[94m1e-3#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4cd858d00)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   5
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../apple/model/_model.py#x1B[0m:117: in hess_prod
    #x1B[0moutput_wp: Full = #x1B[96mself#x1B[39;49;00m.warp.hess_prod(u_full, p_full)#x1B[90m#x1B[39;49;00m
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        output_jax = Array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float64)
        p          = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        p_full     = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        self       = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
        u_full     = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../warp/model/_adapter.py#x1B[0m:60: in hess_prod
    #x1B[0m(output,) = #x1B[96mself#x1B[39;49;00m._hess_prod_callable(u, p, output_dims=u.shape)#x1B[90m#x1B[39;49;00m
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        p          = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        self       = WarpModelAdapter(
  wrapped=WarpModel(
    energies={
      'elastic':
      Phace(
        id='elastic',
        requ...1,), dtype=float64),
               ),
        clamp_hess_diag=False,
        clamp_hess_quad=False
      )
    }
  )
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../_src/jax_experimental/ffi.py#x1B[0m:640: in __call__
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m call(*args, call_id=call_id)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        call       = <function ffi_call.<locals>.wrapped at 0x7fe4d745f380>
        call_id    = 0
        d          = 0
        device     = 'cpu'
        i          = 1
        input_arg  = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d6f176b0>
        input_value = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        module     = <warp._src.context.Module object at 0x7fe51c33b650>
        num_inputs = 2
        out_types  = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        output_arg = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4d6f17ef0>
        output_dims = (4, 3)
        self       = <warp._src.jax_experimental.ffi.FfiCallable object at 0x7fe4d6f15700>
        static_inputs = {}
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/ffi.py#x1B[0m:540: in wrapped
    #x1B[0mresults = ffi_call_p.bind(#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        custom_call_api_version = 4
        has_side_effect = False
        in_avals   = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        input_layouts = None
        input_output_aliases = {}
        kwargs     = {'call_id': 0}
        legacy_backend_config = None
        multiple_results = True
        output_layouts_ = None
        result_avals = (ShapedArray(float64[4,3]),)
        result_shape_dtypes = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        static_input_layouts = ((1, 0), (1, 0))
        static_input_output_aliases = ()
        static_output_layouts = ((1, 0),)
        target_name = 'WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_717'
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:633: in bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m._true_bind(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:649: in _true_bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m.bind_with_trace(prev_trace, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        arg        = Array([[-0.16308578, -0.56740909,  0.93064292],
       [ 0.14900107,  0.06445298, -0.29018964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        prev_trace = EvalTrace
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:661: in bind_with_trace
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m trace.process_primitive(#x1B[96mself#x1B[39;49;00m, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
        in_type    = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
        trace      = EvalTrace
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:1210: in process_primitive
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m primitive.impl(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        primitive  = ffi_call
        self       = EvalTrace
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

prim = ffi_call
args = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
params = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
fun = <PjitFunction of <function ffi_call at 0x7fe4d745ea20>>
prev = <object object at 0x7fe588c97b00>

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mapply_primitive#x1B[39;49;00m(prim, *args, **params):#x1B[90m#x1B[39;49;00m
    #x1B[90m  #x1B[39;49;00m#x1B[33m"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      fun = xla_primitive_callable(prim, **params)#x1B[90m#x1B[39;49;00m
      #x1B[90m# TODO(yashkatariya): Investigate adding is_primitive to jit and never#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[90m# triggering the disable jit path instead of messing around with it here.#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      prev = config.disable_jit.swap_local(#x1B[94mFalse#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
      #x1B[94mtry#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
>       outs = fun(*args)#x1B[90m#x1B[39;49;00m
               ^^^^^^^^^^#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_717 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE       --------------------#x1B[0m
#x1B[1m#x1B[31mE       For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_phace_hess_prod(#x1B[0m
#x1B[1m#x1B[31mE           model=Model(dirichlet=Dirichlet(dim=3,#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_index=Array([], shape=(0,), dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_value=Array([], shape=(0,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE             free_index=Array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             n_points=4),#x1B[0m
#x1B[1m#x1B[31mE            u_full=Array([[-0.42033094, -0.31086302, -1.18779184],#x1B[0m
#x1B[1m#x1B[31mE                   [ 1.08350666, -0.84188598,  0.03346199],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.06173197, -0.09646734, -0.07578768],#x1B[0m
#x1B[1m#x1B[31mE                   [-0.78159042, -1.11343283, -1.00513326]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            jax=JaxModel(energies={}),#x1B[0m
#x1B[1m#x1B[31mE            warp=WarpModelAdapter(wrapped=WarpModel(dim=3,#x1B[0m
#x1B[1m#x1B[31mE              energies={'elastic': Phace(id='elastic',#x1B[0m
#x1B[1m#x1B[31mE                requires_grad=['activation', 'lambda_', 'mu', 'muscle_fraction'],#x1B[0m
#x1B[1m#x1B[31mE                cells=array(shape=(1,), dtype=vec4i),#x1B[0m
#x1B[1m#x1B[31mE                dhdX=array(shape=(1, 1), dtype=mat43(d)),#x1B[0m
#x1B[1m#x1B[31mE                dV=array(shape=(1, 1), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                params=Phace__Params(#x1B[0m
#x1B[1m#x1B[31mE                	activation=array(shape=(1,), dtype=vector(length=6, dtype=float64)),#x1B[0m
#x1B[1m#x1B[31mE                	lambda_=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                	mu=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                	muscle_fraction=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                ),#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_diag=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_quad=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_lambda=False)})),#x1B[0m
#x1B[1m#x1B[31mE            edges_length_mean=Array(0.99999998, dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            frozen=False),#x1B[0m
#x1B[1m#x1B[31mE           mesh=UnstructuredGrid (0x7fe4cd858d00)#x1B[0m
#x1B[1m#x1B[31mE             N Cells:    1#x1B[0m
#x1B[1m#x1B[31mE             N Points:   4#x1B[0m
#x1B[1m#x1B[31mE             X Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Y Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Z Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             N Arrays:   5,#x1B[0m
#x1B[1m#x1B[31mE           seed=0,  # or any other generated value#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEA') as a decorator on your test case#x1B[0m

args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...8964],
       [ 0.76601795,  0.26512078,  0.06760015],
       [-0.61669224,  0.7083533 , -0.88112142]], dtype=float64))
fun        = <PjitFunction of <function ffi_call at 0x7fe4d745ea20>>
params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
prev       = <object object at 0x7fe588c97b00>
prim       = ffi_call

#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/dispatch.py#x1B[0m:91: JaxRuntimeError
tests/warp/energies/elastic/hyperelastic/test_phace.py::test_phace_hess_quad

Flake rate in main: 71.15% (Passed 15 times, Failed 37 times)

Stack Traces | 73.9s run time
model = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
mesh = UnstructuredGrid (0x7fe4cd858d00)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   5

    #x1B[0m#x1B[37m@hypothesis#x1B[39;49;00m.given(seed=testing.seed())#x1B[90m#x1B[39;49;00m
>   #x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mtest_phace_hess_quad#x1B[39;49;00m(seed: #x1B[96mint#x1B[39;49;00m, model: Model, mesh: pv.UnstructuredGrid) -> #x1B[94mNone#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
                   ^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m

f          = <function given.<locals>.run_test_as_given.<locals>.wrapped_test at 0x7fe52c25ee80>
mesh       = UnstructuredGrid (0x7fe4cd858d00)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   5
model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)

#x1B[1m#x1B[.../elastic/hyperelastic/test_phace.py#x1B[0m:67: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
#x1B[1m#x1B[.../elastic/hyperelastic/test_phace.py#x1B[0m:68: in test_phace_hess_quad
    #x1B[0mcommon.check_hess_quad(seed, model, mesh)#x1B[90m#x1B[39;49;00m
        mesh       = UnstructuredGrid (0x7fe4cd858d00)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   5
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        seed       = 0
#x1B[1m#x1B[.../elastic/hyperelastic/common.py#x1B[0m:62: in check_hess_quad
    #x1B[0mexpected: Scalar = jnp.vdot(p, model.hess_prod(u, p))#x1B[90m#x1B[39;49;00m
                                   ^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        actual     = Array(0.63912849, dtype=float64)
        mesh       = UnstructuredGrid (0x7fe4cd858d00)
  N Cells:    1
  N Points:   4
  X Bounds:   -3.536e-01, 3.536e-01
  Y Bounds:   -3.536e-01, 3.536e-01
  Z Bounds:   -3.536e-01, 3.536e-01
  N Arrays:   5
        model      = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        seed       = 0
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../apple/model/_model.py#x1B[0m:117: in hess_prod
    #x1B[0moutput_wp: Full = #x1B[96mself#x1B[39;49;00m.warp.hess_prod(u_full, p_full)#x1B[90m#x1B[39;49;00m
                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        output_jax = Array([[0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.],
       [0., 0., 0.]], dtype=float64)
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        p_full     = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        self       = Model(
  dirichlet=Dirichlet(
    dim=3,
    dirichlet_index=Array([], shape=(0,), dtype=int64),
    dirichlet_value=A...se,
          clamp_hess_quad=False
        )
      }
    )
  ),
  edges_length_mean=Array(0.99999998, dtype=float64)
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
        u_full     = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[.../warp/model/_adapter.py#x1B[0m:60: in hess_prod
    #x1B[0m(output,) = #x1B[96mself#x1B[39;49;00m._hess_prod_callable(u, p, output_dims=u.shape)#x1B[90m#x1B[39;49;00m
                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        p          = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        self       = WarpModelAdapter(
  wrapped=WarpModel(
    energies={
      'elastic':
      Phace(
        id='elastic',
        requ...1,), dtype=float64),
               ),
        clamp_hess_diag=False,
        clamp_hess_quad=False
      )
    }
  )
)
        u          = Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656,  0.32470532,  0.08279294],
       [-0.75529065,  0.86755208, -1.07914894]], dtype=float64)
#x1B[1m#x1B[31m.venv/lib/python3.12.../_src/jax_experimental/ffi.py#x1B[0m:640: in __call__
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m call(*args, call_id=call_id)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        call       = <function ffi_call.<locals>.wrapped at 0x7fe4c3f4d940>
        call_id    = 0
        d          = 0
        device     = 'cpu'
        i          = 1
        input_arg  = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4cd61d460>
        input_value = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        module     = <warp._src.context.Module object at 0x7fe51c33b650>
        num_inputs = 2
        out_types  = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        output_arg = <warp._src.jax_experimental.ffi.FfiArg object at 0x7fe4cd61fd40>
        output_dims = (4, 3)
        self       = <warp._src.jax_experimental.ffi.FfiCallable object at 0x7fe4cd61f050>
        static_inputs = {}
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/ffi.py#x1B[0m:540: in wrapped
    #x1B[0mresults = ffi_call_p.bind(#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        custom_call_api_version = 4
        has_side_effect = False
        in_avals   = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        input_layouts = None
        input_output_aliases = {}
        kwargs     = {'call_id': 0}
        legacy_backend_config = None
        multiple_results = True
        output_layouts_ = None
        result_avals = (ShapedArray(float64[4,3]),)
        result_shape_dtypes = [ShapeDtypeStruct(shape=(4, 3), dtype=float64)]
        static_input_layouts = ((1, 0), (1, 0))
        static_input_output_aliases = ()
        static_output_layouts = ((1, 0),)
        target_name = 'WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_824'
        vmap_method = 'broadcast_all'
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:633: in bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m._true_bind(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:649: in _true_bind
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m #x1B[96mself#x1B[39;49;00m.bind_with_trace(prev_trace, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        arg        = Array([[-0.93533705, -0.11326748,  0.16791879],
       [ 0.81027622, -0.72888169,  0.62500202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        prev_trace = EvalTrace
        self       = ffi_call
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:661: in bind_with_trace
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m trace.process_primitive(#x1B[96mself#x1B[39;49;00m, args, params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
        in_type    = [ShapedArray(float64[4,3]), ShapedArray(float64[4,3])]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        self       = ffi_call
        trace      = EvalTrace
#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/core.py#x1B[0m:1210: in process_primitive
    #x1B[0m#x1B[94mreturn#x1B[39;49;00m primitive.impl(*args, **params)#x1B[90m#x1B[39;49;00m
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^#x1B[90m#x1B[39;49;00m
        args       = [Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64)]
        params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
        primitive  = ffi_call
        self       = EvalTrace
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

prim = ffi_call
args = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
params = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
fun = <PjitFunction of <function ffi_call at 0x7fe4c3f4d800>>
prev = <object object at 0x7fe588c97b00>

    #x1B[0m#x1B[94mdef#x1B[39;49;00m#x1B[90m #x1B[39;49;00m#x1B[92mapply_primitive#x1B[39;49;00m(prim, *args, **params):#x1B[90m#x1B[39;49;00m
    #x1B[90m  #x1B[39;49;00m#x1B[33m"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      fun = xla_primitive_callable(prim, **params)#x1B[90m#x1B[39;49;00m
      #x1B[90m# TODO(yashkatariya): Investigate adding is_primitive to jit and never#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      #x1B[90m# triggering the disable jit path instead of messing around with it here.#x1B[39;49;00m#x1B[90m#x1B[39;49;00m
      prev = config.disable_jit.swap_local(#x1B[94mFalse#x1B[39;49;00m)#x1B[90m#x1B[39;49;00m
      #x1B[94mtry#x1B[39;49;00m:#x1B[90m#x1B[39;49;00m
>       outs = fun(*args)#x1B[90m#x1B[39;49;00m
               ^^^^^^^^^^#x1B[90m#x1B[39;49;00m
#x1B[1m#x1B[31mE       jax.errors.JaxRuntimeError: NOT_FOUND: No FFI handler registered for WarpModelAdapter___hess_prod_callable__locals__hess_prod_callable_824 on a platform Host (canonical host)#x1B[0m
#x1B[1m#x1B[31mE       --------------------#x1B[0m
#x1B[1m#x1B[31mE       For simplicity, JAX has removed its internal frames from the traceback of the following exception. Set JAX_TRACEBACK_FILTERING=off to include these.#x1B[0m
#x1B[1m#x1B[31mE       Falsifying example: test_phace_hess_quad(#x1B[0m
#x1B[1m#x1B[31mE           model=Model(dirichlet=Dirichlet(dim=3,#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_index=Array([], shape=(0,), dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             dirichlet_value=Array([], shape=(0,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE             free_index=Array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11], dtype=int64),#x1B[0m
#x1B[1m#x1B[31mE             n_points=4),#x1B[0m
#x1B[1m#x1B[31mE            u_full=Array([[-0.81671112, -0.09798451,  1.16489133],#x1B[0m
#x1B[1m#x1B[31mE                   [ 1.09169105,  1.08964695,  0.47490621],#x1B[0m
#x1B[1m#x1B[31mE                   [ 0.39828523,  0.91929163, -0.3556751 ],#x1B[0m
#x1B[1m#x1B[31mE                   [-1.03554067,  0.96252309, -0.89989933]], dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            jax=JaxModel(energies={}),#x1B[0m
#x1B[1m#x1B[31mE            warp=WarpModelAdapter(wrapped=WarpModel(dim=3,#x1B[0m
#x1B[1m#x1B[31mE              energies={'elastic': Phace(id='elastic',#x1B[0m
#x1B[1m#x1B[31mE                requires_grad=['activation', 'lambda_', 'mu', 'muscle_fraction'],#x1B[0m
#x1B[1m#x1B[31mE                cells=array(shape=(1,), dtype=vec4i),#x1B[0m
#x1B[1m#x1B[31mE                dhdX=array(shape=(1, 1), dtype=mat43(d)),#x1B[0m
#x1B[1m#x1B[31mE                dV=array(shape=(1, 1), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                params=Phace__Params(#x1B[0m
#x1B[1m#x1B[31mE                	activation=array(shape=(1,), dtype=vector(length=6, dtype=float64)),#x1B[0m
#x1B[1m#x1B[31mE                	lambda_=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                	mu=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                	muscle_fraction=array(shape=(1,), dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE                ),#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_diag=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_hess_quad=False,#x1B[0m
#x1B[1m#x1B[31mE                clamp_lambda=False)})),#x1B[0m
#x1B[1m#x1B[31mE            edges_length_mean=Array(0.99999998, dtype=float64),#x1B[0m
#x1B[1m#x1B[31mE            frozen=False),#x1B[0m
#x1B[1m#x1B[31mE           mesh=UnstructuredGrid (0x7fe4cd858d00)#x1B[0m
#x1B[1m#x1B[31mE             N Cells:    1#x1B[0m
#x1B[1m#x1B[31mE             N Points:   4#x1B[0m
#x1B[1m#x1B[31mE             X Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Y Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             Z Bounds:   -3.536e-01, 3.536e-01#x1B[0m
#x1B[1m#x1B[31mE             N Arrays:   5,#x1B[0m
#x1B[1m#x1B[31mE           seed=0,  # or any other generated value#x1B[0m
#x1B[1m#x1B[31mE       )#x1B[0m
#x1B[1m#x1B[31mE       #x1B[0m
#x1B[1m#x1B[31mE       You can reproduce this example by temporarily adding @reproduce_failure('6.150.1', b'AEEA') as a decorator on your test case#x1B[0m

args       = (Array([[-0.19973847, -0.69493137,  1.13980015],
       [ 0.18248829,  0.07893845, -0.35540827],
       [ 0.93817656, ...0202],
       [ 0.07366043, -0.68028063, -0.04946978],
       [-1.00891584, -0.82771482, -0.90290814]], dtype=float64))
fun        = <PjitFunction of <function ffi_call at 0x7fe4c3f4d800>>
params     = {'attributes': (('call_id', 0),), 'custom_call_api_version': 4, 'has_side_effect': False, 'input_layouts': ((1, 0), (1, 0)), ...}
prev       = <object object at 0x7fe588c97b00>
prim       = ffi_call

#x1B[1m#x1B[31m.venv/lib/python3.12.../jax/_src/dispatch.py#x1B[0m:91: JaxRuntimeError

To view more test analytics, go to the Test Analytics Dashboard
📋 Got 3 mins? Take this short survey to help us improve Test Analytics.

@renovate renovate bot force-pushed the renovate/liblaf-grapes-9.x branch from 0ef3d7f to db9fb93 Compare January 20, 2026 13:56
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants