Skip to content

Prompture is an API-first library for requesting structured JSON output from LLMs (or any structure), validating it against a schema, and running comparative tests between models.

License

Notifications You must be signed in to change notification settings

jhd3197/Prompture

Repository files navigation

Prompture

Structured JSON extraction from any LLM. Schema-enforced, Pydantic-native, multi-provider.

PyPI version Python versions License: MIT Downloads GitHub stars


Prompture is a Python library that turns LLM responses into validated, structured data. Define a schema or Pydantic model, point it at any provider, and get typed output back — with token tracking, cost calculation, and automatic JSON repair built in.

from pydantic import BaseModel
from prompture import extract_with_model

class Person(BaseModel):
    name: str
    age: int
    profession: str

person = extract_with_model(Person, "Maria is 32, a developer in NYC.", model_name="openai/gpt-4")
print(person.name)  # Maria

Key Features

  • Structured output — JSON schema enforcement and direct Pydantic model population
  • 12 providers — OpenAI, Claude, Google, Groq, Grok, Azure, Ollama, LM Studio, OpenRouter, HuggingFace, AirLLM, and generic HTTP
  • TOON input conversion — 45-60% token savings when sending structured data via Token-Oriented Object Notation
  • Stepwise extraction — Per-field prompts with smart type coercion (shorthand numbers, multilingual booleans, dates)
  • Field registry — 50+ predefined extraction fields with template variables and Pydantic integration
  • Conversations — Stateful multi-turn sessions with sync and async support
  • Tool use — Function calling and streaming across supported providers, with automatic prompt-based simulation for models without native tool support
  • Caching — Built-in response cache with memory, SQLite, and Redis backends
  • Plugin system — Register custom drivers via entry points
  • Usage tracking — Token counts and cost calculation on every call
  • Auto-repair — Optional second LLM pass to fix malformed JSON
  • Batch testing — Spec-driven suites to compare models side by side

Installation

pip install prompture

Optional extras:

pip install prompture[redis]     # Redis cache backend
pip install prompture[serve]     # FastAPI server mode
pip install prompture[airllm]    # AirLLM local inference

Configuration

Set API keys for the providers you use. Prompture reads from environment variables or a .env file:

OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
GOOGLE_API_KEY=...
GROQ_API_KEY=...
GROK_API_KEY=...
OPENROUTER_API_KEY=...
AZURE_OPENAI_ENDPOINT=...
AZURE_OPENAI_API_KEY=...

Local providers (Ollama, LM Studio) work out of the box with no keys required.

Providers

Model strings use "provider/model" format. The provider prefix routes to the correct driver automatically.

Provider Example Model Cost
openai openai/gpt-4 Automatic
claude claude/claude-3 Automatic
google google/gemini-1.5-pro Automatic
groq groq/llama2-70b-4096 Automatic
grok grok/grok-4-fast-reasoning Automatic
azure azure/deployed-name Automatic
openrouter openrouter/anthropic/claude-2 Automatic
ollama ollama/llama3.1:8b Free (local)
lmstudio lmstudio/local-model Free (local)
huggingface hf/model-name Free (local)
http http/self-hosted Free

Usage

One-Shot Pydantic Extraction

Single LLM call, returns a validated Pydantic instance:

from typing import List, Optional
from pydantic import BaseModel
from prompture import extract_with_model

class Person(BaseModel):
    name: str
    age: int
    profession: str
    city: str
    hobbies: List[str]
    education: Optional[str] = None

person = extract_with_model(
    Person,
    "Maria is 32, a software developer in New York. She loves hiking and photography.",
    model_name="openai/gpt-4"
)
print(person.model_dump())

Stepwise Extraction

One LLM call per field. Higher accuracy, per-field error recovery:

from prompture import stepwise_extract_with_model

result = stepwise_extract_with_model(
    Person,
    "Maria is 32, a software developer in New York. She loves hiking and photography.",
    model_name="openai/gpt-4"
)
print(result["model"].model_dump())
print(result["usage"])  # per-field and total token usage
Aspect extract_with_model stepwise_extract_with_model
LLM calls 1 N (one per field)
Speed / cost Faster, cheaper Slower, higher
Accuracy Good global coherence Higher per-field accuracy
Error handling All-or-nothing Per-field recovery

JSON Schema Extraction

For raw JSON output with full control:

from prompture import ask_for_json

schema = {
    "type": "object",
    "required": ["name", "age"],
    "properties": {
        "name": {"type": "string"},
        "age": {"type": "integer"}
    }
}

result = ask_for_json(
    content_prompt="Extract the person's info from: John is 28 and lives in Miami.",
    json_schema=schema,
    model_name="openai/gpt-4"
)
print(result["json_object"])  # {"name": "John", "age": 28}
print(result["usage"])        # token counts and cost

TOON Input — Token Savings

Analyze structured data with automatic TOON conversion for 45-60% fewer tokens:

from prompture import extract_from_data

products = [
    {"id": 1, "name": "Laptop", "price": 999.99, "rating": 4.5},
    {"id": 2, "name": "Book", "price": 19.99, "rating": 4.2},
    {"id": 3, "name": "Headphones", "price": 149.99, "rating": 4.7},
]

result = extract_from_data(
    data=products,
    question="What is the average price and highest rated product?",
    json_schema={
        "type": "object",
        "properties": {
            "average_price": {"type": "number"},
            "highest_rated": {"type": "string"}
        }
    },
    model_name="openai/gpt-4"
)

print(result["json_object"])
# {"average_price": 389.99, "highest_rated": "Headphones"}

print(f"Token savings: {result['token_savings']['percentage_saved']}%")

Works with Pandas DataFrames via extract_from_pandas().

Field Definitions

Use the built-in field registry for consistent extraction across models:

from pydantic import BaseModel
from prompture import field_from_registry, stepwise_extract_with_model

class Person(BaseModel):
    name: str = field_from_registry("name")
    age: int = field_from_registry("age")
    email: str = field_from_registry("email")
    occupation: str = field_from_registry("occupation")

result = stepwise_extract_with_model(
    Person,
    "John Smith, 25, software engineer at TechCorp, john@example.com",
    model_name="openai/gpt-4"
)

Register custom fields with template variables:

from prompture import register_field

register_field("document_date", {
    "type": "str",
    "description": "Document creation date",
    "instructions": "Use {{current_date}} if not specified",
    "default": "{{current_date}}",
    "nullable": False
})

Conversations

Stateful multi-turn sessions:

from prompture import Conversation

conv = Conversation(model_name="openai/gpt-4")
conv.add_message("system", "You are a helpful assistant.")
response = conv.send("What is the capital of France?")
follow_up = conv.send("What about Germany?")  # retains context

Tool Use

Register Python functions as tools the LLM can call during a conversation:

from prompture import Conversation, ToolRegistry

registry = ToolRegistry()

@registry.tool
def get_weather(city: str, units: str = "celsius") -> str:
    """Get the current weather for a city."""
    return f"Weather in {city}: 22 {units}"

conv = Conversation("openai/gpt-4", tools=registry)
result = conv.ask("What's the weather in London?")

For models without native function calling (Ollama, LM Studio, etc.), Prompture automatically simulates tool use by describing tools in the prompt and parsing structured JSON responses:

# Auto-detect: uses native tool calling if available, simulation otherwise
conv = Conversation("ollama/llama3.1:8b", tools=registry, simulated_tools="auto")

# Force simulation even on capable models
conv = Conversation("openai/gpt-4", tools=registry, simulated_tools=True)

# Disable tool use entirely
conv = Conversation("openai/gpt-4", tools=registry, simulated_tools=False)

The simulation loop describes tools in the system prompt, asks the model to respond with JSON (tool_call or final_answer), executes tools, and feeds results back — all transparent to the caller.

Model Discovery

Auto-detect available models from configured providers:

from prompture import get_available_models

models = get_available_models()
for model in models:
    print(model)  # "openai/gpt-4", "ollama/llama3:latest", ...

Logging and Debugging

import logging
from prompture import configure_logging

configure_logging(logging.DEBUG)

Response Shape

All extraction functions return a consistent structure:

{
    "json_string": str,       # raw JSON text
    "json_object": dict,      # parsed result
    "usage": {
        "prompt_tokens": int,
        "completion_tokens": int,
        "total_tokens": int,
        "cost": float,
        "model_name": str
    }
}

CLI

prompture run <spec-file>

Run spec-driven extraction suites for cross-model comparison.

Development

# Install with dev dependencies
pip install -e ".[test,dev]"

# Run tests
pytest

# Run integration tests (requires live LLM access)
pytest --run-integration

# Lint and format
ruff check .
ruff format .

Contributing

PRs welcome. Please add tests for new functionality and examples under examples/ for new drivers or patterns.

License

MIT

About

Prompture is an API-first library for requesting structured JSON output from LLMs (or any structure), validating it against a schema, and running comparative tests between models.

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

  •  

Contributors 3

  •  
  •  
  •