"I live with data, for data โ because everything is about data."
mindmap
root((Data Expert))
Data Science & ML
CRISP-DM
Statistical Analysis
Deep Learning
MLOps & LLMOps
Database Architecture
PostgreSQL
MongoDB
DynamoDB
Vector DBs
MLOps Infrastructure
Airflow
MLflow
Docker
Monitoring
Best Practices
SOLID Principles
Clean Code
12-Factor Apps
Documentation
Primary Databases
| Category | Technologies & Expertise |
|---|---|
| Relational | |
| NoSQL | |
| Vector | |
| Cache/Queue | |
| Data Warehouses |
Database Tools & Management
| Category | Tools |
|---|---|
| Primary UI Tools | |
| Management Tools | |
| Cloud Management | |
| CLI Tools |
Learning & Exploration
| Category | Technologies |
|---|---|
| Time Series | |
| Graph | |
| Search & Analytics | |
| Distributed |
Database selection is always problem-driven! Primarily focused on data science and analytics use cases.
Data Processing & Analysis
| Category | Technologies |
|---|---|
| Core Processing | |
| Big Data | |
| Machine Learning | |
| Deep Learning | |
| Statistical Analysis | |
| Time Series | |
| Survival Analysis |
Data Visualization & Applications
| Category | Technologies |
|---|---|
| Interactive Viz | |
| Web Applications | |
| Static Plotting | |
| Business Intelligence |
Model Development & Experimentation
| Category | Technologies & Status |
|---|---|
| Experiment Tracking | |
| Hyperparameter Tuning | |
| Version Control | |
| Model Registry |
Deployment & Serving
| Category | Technologies & Status |
|---|---|
| API Development | |
| Containerization | |
| Model Serving | |
| Cloud Deployment |
LLMOps & AI Infrastructure
| Category | Technologies & Status |
|---|---|
| LLM Monitoring | |
| LLM Frameworks | |
| Vector Databases | |
| Model Hosting |
Monitoring & Observability
| Category | Technologies & Status |
|---|---|
| Metrics & Dashboards | |
| System Monitoring | |
| Application Monitoring | |
| Tracing | |
| Alerting |
Workflow Orchestration
| Category | Technologies & Status |
|---|---|
| Primary Orchestrator | |
| Learning/Exploring | |
| Low-Code Solutions | |
| Schedulers |
Programming Languages
| Language | Proficiency | Use Cases |
|---|---|---|
| Expert | Data Science, MLOps, Backend APIs | |
| Expert | Database queries, analytics, ETL | |
| Beginner | Microservices, CLI tools | |
| Intermediate | Statistical analysis (rarely used) |
Statistical Approach
class StatisticalPhilosophy:
"""Bayesian thinking, frequentist validation."""
def __init__(self):
self.statistical_practices = {
"hypothesis_testing": {
"approach": "Bayesian-first, frequentist validation",
"tools": ["scipy.stats", "statsmodels", "pymc"],
"principles": [
"Effect size over p-values",
"Confidence intervals",
"Power analysis",
"Multiple testing correction"
]
},
"model_evaluation": {
"cross_validation": ["time-series-split", "nested-cv"],
"metrics": ["business-aligned", "statistical-rigor"],
"validation": ["out-of-time", "out-of-sample"]
},
"experimental_design": {
"methods": [
"A/B Testing",
"Multi-armed bandits",
"Factorial designs"
],
"considerations": [
"Sample size calculation",
"Randomization",
"Control groups"
]
}
}
def favorite_template(self):
return "cookiecutter-data-science by @drivendataorg"Project Structure Philosophy
๐ project_name/
โโโ ๐ data/ # Data files (git-ignored, DVC-tracked)
โ โโโ ๐ raw/ # Immutable raw data
โ โโโ ๐ processed/ # Cleaned, transformed data
โ โโโ ๐ features/ # Feature engineering outputs
โโโ ๐ notebooks/ # Jupyter notebooks (EDA, experiments)
โ โโโ ๐ 00_eda.ipynb
โ โโโ ๐ 01_modeling.ipynb
โโโ ๐ src/ # Source code
โ โโโ ๐ data/ # Data processing
โ โโโ ๐ features/ # Feature engineering
โ โโโ ๐ models/ # Model training and inference
โ โโโ ๐ visualization/# Plotting and dashboards
โโโ ๐ tests/ # Test files
โโโ ๐ configs/ # Configuration files
โโโ ๐ docs/ # Documentation
โโโ ๐ monitoring/ # Grafana dashboards, alerts
โโโ ๐ deployment/ # Docker, K8s, cloud configs
โโโ ๐ .env.example # Environment variables template
โโโ ๐ .gitignore
โโโ ๐ pyproject.toml # Project metadata and dependencies
โโโ ๐ README.md # Project documentation
โโโ ๐ Dockerfile # Container definition
โโโ ๐ docker-compose.yml # Local development stack
Code Quality Standards
| Category | Tools & Practices |
|---|---|
| Linting | |
| Type Checking | |
| Testing | |
| Documentation | |
| Pre-commit |
My favorite game is... building data pipelines so powerful that even the final boss (your data chaos) gets defeated before the first turn!
Currently working on a comprehensive video games database with ML-powered recommendation system!
๐น๏ธ Video Games Database
Current Features:
- Comprehensive game metadata collection
- User rating prediction models
- Recommendation engine using collaborative filtering
- Real-time data pipeline with Airflow
- Interactive Streamlit dashboard
- Self-hosted MongoDB cluster
- Grafana monitoring for data quality
Tech Stack: Python, MongoDB, Airflow, MLflow, Streamlit, Docker
๐ฏ 2025 Goals & Progress
- Complete IBM Data Scientist Certification โ
- Deploy 5 production ML models with full monitoring
- Master Grafana & Prometheus for ML observability
- Contribute to 3+ open-source MLOps projects
- Complete comprehensive video games database project
- Learn Go language fundamentals
- Implement end-to-end LLMOps pipeline
- Write 10 technical blog posts about MLOps
Current Focus: Building robust, self-hosted MLOps infrastructure and mastering LLMOps practices.



