Skip to content

dbsxdbsx/MyAutoPapers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

80 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

自动论文推送(每月更新)

本项目每月自动从 arXiv 获取最新的论文,基于关键词进行筛选。

点击 'Watch' 按钮可以接收每月自动推送的邮件通知。

最后更新:2026-01-02 00:05

本次更新执行命令

D:\a\MyAutoPapers\MyAutoPapers\target\release\my_auto_papers.exe --keywords=
             efficient RL,
             partial observable markov decision process/pomdp,sparse reward reinforcement learning,
             casual RL/counterfactual RL/casual reinforcement learning,
             causal inference/causal discovery/counterfactual reasoning,
             video super resolution,
             knowledge graph/knowledge distillation/knowledge representation/knowledge transfer/knowledge embedding,
             combinatorial game theory/xiangqi/chinese chess,
             code llm,
             speech recognition,
             zero shot tracking/few shot tracking/pose tracking/pose estimation,
             text to 3d/image to 3d/text to texture,
             automated theorem proving/interactive theorem proving/formal verification
              --exclude-keywords=multi-agent,multiagent --per-keyword-max-result=8

参数详解

  • 关键词:efficient RL, partial observable markov decision process/pomdp, sparse reward reinforcement learning, casual RL/counterfactual RL/casual reinforcement learning, causal inference/causal discovery/counterfactual reasoning, video super resolution, knowledge graph/knowledge distillation/knowledge representation/knowledge transfer/knowledge embedding, combinatorial game theory/xiangqi/chinese chess, code llm, speech recognition, zero shot tracking/few shot tracking/pose tracking/pose estimation, text to 3d/image to 3d/text to texture, automated theorem proving/interactive theorem proving/formal verification
  • 排除关键词:multi-agent, multiagent
  • 每关键词最大结果:8
  • 目标领域:cs, stat
  • 每关键词重试次数:3

论文汇总(195篇)

1. efficient RL

序号 标题 日期 摘要
1 Replay Failures as Successes: Sample-Efficient Reinforcement Learning for Instruction Following 2025-12-29
展开

Reinforcement Learning (RL) has shown promise for aligning Large Language Models (LLMs) to follow instructions with various constraints. Despite the encouraging results, RL improvement inevitably relies on sampling successful, high-quality responses; however, the initial model often struggles to generate responses that satisfy all constraints due to its limited capabilities, yielding sparse or indistinguishable rewards that impede learning. In this work, we propose Hindsight instruction Replay (HiR), a novel sample-efficient RL framework for complex instruction following tasks, which employs a select-then-rewrite strategy to replay failed attempts as successes based on the constraints that have been satisfied in hindsight. We perform RL on these replayed samples as well as the original ones, theoretically framing the objective as dual-preference learning at both the instruction- and response-level to enable efficient optimization using only a binary reward signal. Extensive experiments demonstrate that the proposed HiR yields promising results across different instruction following tasks, while requiring less computational budget. Our code and dataset is available at https://github.com/sastpg/HIR.

2 Evaluating Parameter Efficient Methods for RLVR 2025-12-29
展开

We systematically evaluate Parameter-Efficient Fine-Tuning (PEFT) methods under the paradigm of Reinforcement Learning with Verifiable Rewards (RLVR). RLVR incentivizes language models to enhance their reasoning capabilities through verifiable feedback; however, while methods like LoRA are commonly used, the optimal PEFT architecture for RLVR remains unidentified. In this work, we conduct the first comprehensive evaluation of over 12 PEFT methodologies across the DeepSeek-R1-Distill families on mathematical reasoning benchmarks. Our empirical results challenge the default adoption of standard LoRA with three main findings. First, we demonstrate that structural variants, such as DoRA, AdaLoRA, and MiSS, consistently outperform LoRA. Second, we uncover a spectral collapse phenomenon in SVD-informed initialization strategies (\textit{e.g.,} PiSSA, MiLoRA), attributing their failure to a fundamental misalignment between principal-component updates and RL optimization. Furthermore, our ablations reveal that extreme parameter reduction (\textit{e.g.,} VeRA, Rank-1) severely bottlenecks reasoning capacity. We further conduct ablation studies and scaling experiments to validate our findings. This work provides a definitive guide for advocating for more exploration for parameter-efficient RL methods.

3 AgentMath: Empowering Mathematical Reasoning for Large Language Models via Tool-Augmented Agent 2025-12-23
展开

Large Reasoning Models (LRMs) like o3 and DeepSeek-R1 have achieved remarkable progress in natural language reasoning with long chain-of-thought. However, they remain computationally inefficient and struggle with accuracy when solving problems requiring complex mathematical operations. In this work, we present AgentMath, an agent framework that seamlessly integrates language models' reasoning capabilities with code interpreters' computational precision to efficiently tackle complex mathematical problems. Our approach introduces three key innovations: (1) An automated method that converts natural language chain-of-thought into structured tool-augmented trajectories, generating high-quality supervised fine-tuning (SFT) data to alleviate data scarcity; (2) A novel agentic reinforcement learning (RL) paradigm that dynamically interleaves natural language generation with real-time code execution. This enables models to autonomously learn optimal tool-use strategies through multi-round interactive feedback, while fostering emergent capabilities in code refinement and error correction; (3) An efficient training system incorporating innovative techniques, including request-level asynchronous rollout scheduling, agentic partial rollout, and prefix-aware weighted load balancing, achieving 4-5x speedup and making efficient RL training feasible on ultra-long sequences with scenarios with massive tool invocation. The evaluations show that AgentMath achieves state-of-the-art performance on challenging mathematical competition benchmarks including AIME24, AIME25, and HMMT25. Specifically, AgentMath-30B-A3B attains 90.6%, 86.4%, and 73.8% accuracy respectively, achieving advanced performance. The results validate the effectiveness of our approach and pave the way for building more sophisticated and scalable mathematical reasoning agents.

4 Posterior Behavioral Cloning: Pretraining BC Policies for Efficient RL Finetuning 2025-12-18
展开

Standard practice across domains from robotics to language is to first pretrain a policy on a large-scale demonstration dataset, and then finetune this policy, typically with reinforcement learning (RL), in order to improve performance on deployment domains. This finetuning step has proved critical in achieving human or super-human performance, yet while much attention has been given to developing more effective finetuning algorithms, little attention has been given to ensuring the pretrained policy is an effective initialization for RL finetuning. In this work we seek to understand how the pretrained policy affects finetuning performance, and how to pretrain policies in order to ensure they are effective initializations for finetuning. We first show theoretically that standard behavioral cloning (BC) -- which trains a policy to directly match the actions played by the demonstrator -- can fail to ensure coverage over the demonstrator's actions, a minimal condition necessary for effective RL finetuning. We then show that if, instead of exactly fitting the observed demonstrations, we train a policy to model the posterior distribution of the demonstrator's behavior given the demonstration dataset, we do obtain a policy that ensures coverage over the demonstrator's actions, enabling more effective finetuning. Furthermore, this policy -- which we refer to as the posterior behavioral cloning (PostBC) policy -- achieves this while ensuring pretrained performance is no worse than that of the BC policy. We then show that PostBC is practically implementable with modern generative models in robotic control domains -- relying only on standard supervised learning -- and leads to significantly improved RL finetuning performance on both realistic robotic control benchmarks and real-world robotic manipulation tasks, as compared to standard behavioral cloning.

5 HetRL: Efficient Reinforcement Learning for LLMs in Heterogeneous Environments 2025-12-13
展开

As large language models (LLMs) continue to scale and new GPUs are released even more frequently, there is an increasing demand for LLM post-training in heterogeneous environments to fully leverage underutilized mid-range or previous-generation GPUs across regions and alleviate the shortage of homogeneous high-end GPUs within a single region. However, achieving high-performance reinforcement learning (RL) training for LLMs on such computing resources remains challenging because the workflow involves multiple models and tasks with complex computation and data dependencies. In this paper, we present HetRL, a distributed system for efficient RL training in infrastructures with heterogeneous GPUs and networks. HetRL formulates the scheduling of RL training in heterogeneous environments as a constrained joint optimization problem and introduces a novel scheduling algorithm that (1) decomposes the complex search space with a multi-level search framework; and (2) allocates the search budget via successive halving. Our extensive evaluation, consuming 20,000 GPU-hours, shows that HetRL delivers up to 9.17x the throughput of state-of-the-art systems, and 3.17x on average, under various workloads and settings.

6 LightSearcher: Efficient DeepSearch via Experiential Memory 2025-12-07
展开

DeepSearch paradigms have become a core enabler for deep reasoning models, allowing them to invoke external search tools to access up-to-date, domain-specific knowledge beyond parametric boundaries, thereby enhancing the depth and factual reliability of reasoning. Building upon this foundation, recent advances in reinforcement learning (RL) have further empowered models to autonomously and strategically control search tool usage, optimizing when and how to query external knowledge sources. Yet, these RL-driven DeepSearch systems often reveal a see-saw trade-off between accuracy and efficiency-frequent tool invocations can improve factual correctness but lead to unnecessary computational overhead and diminished efficiency. To address this challenge, we propose LightSearcher, an efficient RL framework that incorporates textual experiential memory by learning contrastive reasoning trajectories to generate interpretable summaries of successful reasoning patterns. In addition, it employs an adaptive reward shaping mechanism that penalizes redundant tool calls only in correct-answer scenarios. This design effectively balances the inherent accuracy-efficiency trade-off in DeepSearch paradigms. Experiments on four multi-hop QA benchmarks show that LightSearcher maintains accuracy comparable to SOTA baseline ReSearch, while reducing search tool invocations by 39.6%, inference time by 48.6%, and token consumption by 21.2%, demonstrating its superior efficiency.

7 Auto-exploration for online reinforcement learning 2025-12-06
展开

The exploration-exploitation dilemma in reinforcement learning (RL) is a fundamental challenge to efficient RL algorithms. Existing algorithms for finite state and action discounted RL problems address this by assuming sufficient exploration over both state and action spaces. However, this yields non-implementable algorithms and sub-optimal performance. To resolve these limitations, we introduce a new class of methods with auto-exploration, or methods that automatically explore both state and action spaces in a parameter-free way, i.e.,~without a priori knowledge of problem-dependent parameters. We present two variants: one for the tabular setting and one for linear function approximation. Under algorithm-independent assumptions on the existence of an exploring optimal policy, both methods attain $O(ε^{-2})$ sample complexity to solve to $ε$ error. Crucially, these complexities are novel since they are void of algorithm-dependent parameters seen in prior works, which may be arbitrarily large. The methods are also simple to implement because they are parameter-free and do not directly estimate the unknown parameters. These feats are achieved by new algorithmic innovations for RL, including a dynamic mixing time, a discounted state distribution for sampling, a simple robust gradient estimator, and a recent advantage gap function to certify convergence.

8 RLinf: Flexible and Efficient Large-scale Reinforcement Learning via Macro-to-Micro Flow Transformation 2025-09-19
展开

Reinforcement learning (RL) has demonstrated immense potential in advancing artificial general intelligence, agentic intelligence, and embodied intelligence. However, the inherent heterogeneity and dynamicity of RL workflows often lead to low hardware utilization and slow training on existing systems. In this paper, we present RLinf, a high-performance RL training system based on our key observation that the major roadblock to efficient RL training lies in system flexibility. To maximize flexibility and efficiency, RLinf is built atop a novel RL system design paradigm called macro-to-micro flow transformation (M2Flow), which automatically breaks down high-level, easy-to-compose RL workflows at both the temporal and spatial dimensions, and recomposes them into optimized execution flows. Supported by RLinf worker's adaptive communication capability, we devise context switching and elastic pipelining to realize M2Flow transformation, and a profiling-guided scheduling policy to generate optimal execution plans. Extensive evaluations on both reasoning RL and embodied RL tasks demonstrate that RLinf consistently outperforms state-of-the-art systems, achieving $1.07\times-2.43\times$ speedup in end-to-end training throughput.

2. partial observable markov decision process/pomdp

序号 标题 日期 摘要
1 The World Is Bigger! A Computationally-Embedded Perspective on the Big World Hypothesis 2025-12-29
展开

Continual learning is often motivated by the idea, known as the big world hypothesis, that "the world is bigger" than the agent. Recent problem formulations capture this idea by explicitly constraining an agent relative to the environment. These constraints lead to solutions in which the agent continually adapts to best use its limited capacity, rather than converging to a fixed solution. However, explicit constraints can be ad hoc, difficult to incorporate, and may limit the effectiveness of scaling up the agent's capacity. In this paper, we characterize a problem setting in which an agent, regardless of its capacity, is constrained by being embedded in the environment. In particular, we introduce a computationally-embedded perspective that represents an embedded agent as an automaton simulated within a universal (formal) computer. Such an automaton is always constrained; we prove that it is equivalent to an agent that interacts with a partially observable Markov decision process over a countably infinite state-space. We propose an objective for this setting, which we call interactivity, that measures an agent's ability to continually adapt its behaviour by learning new predictions. We then develop a model-based reinforcement learning algorithm for interactivity-seeking, and use it to construct a synthetic problem to evaluate continual learning capability. Our results show that deep nonlinear networks struggle to sustain interactivity, whereas deep linear networks sustain higher interactivity as capacity increases.

2 Reinforcement Learning for Optimal Stopping in POMDPs with Application to Quickest Change Detection 2025-12-26
展开

The field of quickest change detection (QCD) focuses on the design and analysis of online algorithms that estimate the time at which a significant event occurs. In this paper, design and analysis are cast in a Bayesian framework, where QCD is formulated as an optimal stopping problem with partial observations. An approximately optimal detection algorithm is sought using techniques from reinforcement learning. The contributions of the paper are summarized as follows: (i) A Q-learning algorithm is proposed for the general partially observed optimal stopping problem. It is shown to converge under linear function approximation, given suitable assumptions on the basis functions. An example is provided to demonstrate that these assumptions are necessary to ensure algorithmic stability. (ii) Prior theory motivates a particular choice of features in applying Q-learning to QCD. It is shown that, in several scenarios and under ideal conditions, the resulting class of policies contains one that is approximately optimal. (iii) Numerical experiments show that Q-learning consistently produces policies that perform close to the best achievable within the chosen function class.

3 Jointly Optimal Policies for Remote Estimation of Autoregressive Markov Processes over Time-Correlated Fading Channel 2025-12-25
展开

We study a remote estimation setup with an autoregressive (AR) Markov process, a sensor, and a remote estimator. The sensor observes the process and sends encoded observations to the estimator as packets over an unreliable communication channel modeled as the Gilbert-Elliot (GE) channel. We assume that the sensor gets to observe the channel state by the ACK/NACK feedback mechanism only when it attempts a transmission while it does not observe the channel state when no transmission attempt is made. The objective is to design a transmission scheduling strategy for the sensor, and an estimation strategy for the estimator that are jointly optimal, i.e., they minimize the expected value of an infinite-horizon cumulative discounted cost defined as the sum of squared estimation error over time and the sensor's transmission power. Since the sensor and the estimator have access to different information sets, this constitutes a decentralized stochastic control problem. We formulate this problem as a partially observed Markov decision process (POMDP) and show the existence of jointly optimal transmission and estimation strategies that have a simple structure. More specifically, an optimal transmission strategy exhibits a threshold structure, i.e., the sensor attempts a transmission only when its belief about the channel being in a good state exceeds a threshold that depends on a certain error. Moreover, an optimal estimation strategy follows a `Kalman-like' update rule. When the channel parameters are unknown, we exploit this structure to design an actor-critic reinforcement learning algorithm that converges to a locally optimal policy. Simulations show the learned policy performs close to a globally optimal one, with about a 5.5% average relative gap across evaluated parameters.

4 Cruising the Spectrum: Joint Spectrum Mobility and Antenna Array Management for Mobile (cm/mm)Wave Connectivity 2025-12-24
展开

The large bandwidths available at millimeter wave (mmWave) FR2 bands (24-71 GHz) and the emerging FR3 bands (7-24 GHz) are essential for supporting high data rates. Highly directional beams utilized to overcome the attenuation in these frequencies necessitate robust and efficient beamforming schemes. Nevertheless, antenna and beam management approaches still face challenges in highly mobile solutions, such as vehicular connectivity, with increasing number of bands. In this work, the concepts of spectrum mobility is studied along with antenna array management in multiple frequencies to improve beamforming under mobility. The spectrum mobility problem aims to select the optimal channel frequency and beam direction in each time slot to maximize data rate. This problem is formulated as a Partially Observable Markov Decision Process (POMDP) and Point-Based Value Iteration (PBVI) algorithm is used to find a policy with performance guarantees. Numerical examples confirm the efficacy of the resulting policy for multiple available frequency bands, even when the user mobility significantly deviates from models assumed during policy generation.

5 Active Intelligence in Video Avatars via Closed-loop World Modeling 2025-12-23
展开

Current video avatar generation methods excel at identity preservation and motion alignment but lack genuine agency, they cannot autonomously pursue long-term goals through adaptive environmental interaction. We address this by introducing L-IVA (Long-horizon Interactive Visual Avatar), a task and benchmark for evaluating goal-directed planning in stochastic generative environments, and ORCA (Online Reasoning and Cognitive Architecture), the first framework enabling active intelligence in video avatars. ORCA embodies Internal World Model (IWM) capabilities through two key innovations: (1) a closed-loop OTAR cycle (Observe-Think-Act-Reflect) that maintains robust state tracking under generative uncertainty by continuously verifying predicted outcomes against actual generations, and (2) a hierarchical dual-system architecture where System 2 performs strategic reasoning with state prediction while System 1 translates abstract plans into precise, model-specific action captions. By formulating avatar control as a POMDP and implementing continuous belief updating with outcome verification, ORCA enables autonomous multi-step task completion in open-domain scenarios. Extensive experiments demonstrate that ORCA significantly outperforms open-loop and non-reflective baselines in task success rate and behavioral coherence, validating our IWM-inspired design for advancing video avatar intelligence from passive animation to active, goal-oriented behavior.

6 On Swarm Leader Identification using Probing Policies 2025-12-20
展开

Identifying the leader within a robotic swarm is crucial, especially in adversarial contexts where leader concealment is necessary for mission success. This work introduces the interactive Swarm Leader Identification (iSLI) problem, a novel approach where an adversarial probing agent identifies a swarm's leader by physically interacting with its members. We formulate the iSLI problem as a Partially Observable Markov Decision Process (POMDP) and employ Deep Reinforcement Learning, specifically Proximal Policy Optimization (PPO), to train the prober's policy. The proposed approach utilizes a novel neural network architecture featuring a Timed Graph Relationformer (TGR) layer combined with a Simplified Structured State Space Sequence (S5) model. The TGR layer effectively processes graph-based observations of the swarm, capturing temporal dependencies and fusing relational information using a learned gating mechanism to generate informative representations for policy learning. Extensive simulations demonstrate that our TGR-based model outperforms baseline graph neural network architectures and exhibits significant zero-shot generalization capabilities across varying swarm sizes and speeds different from those used during training. The trained prober achieves high accuracy in identifying the leader, maintaining performance even in out-of-training distribution scenarios, and showing appropriate confidence levels in its predictions. Real-world experiments with physical robots further validate the approach, confirming successful sim-to-real transfer and robustness to dynamic changes, such as unexpected agent disconnections.

7 Emergent World Beliefs: Exploring Transformers in Stochastic Games 2025-12-18
展开

Transformer-based large language models (LLMs) have demonstrated strong reasoning abilities across diverse fields, from solving programming challenges to competing in strategy-intensive games such as chess. Prior work has shown that LLMs can develop emergent world models in games of perfect information, where internal representations correspond to latent states of the environment. In this paper, we extend this line of investigation to domains of incomplete information, focusing on poker as a canonical partially observable Markov decision process (POMDP). We pretrain a GPT-style model on Poker Hand History (PHH) data and probe its internal activations. Our results demonstrate that the model learns both deterministic structure, such as hand ranks, and stochastic features, such as equity, without explicit instruction. Furthermore, by using primarily nonlinear probes, we demonstrated that these representations are decodeable and correlate with theoretical belief states, suggesting that LLMs are learning their own representation of the stochastic environment of Texas Hold'em Poker.

8 Evolutionary Reinforcement Learning based AI tutor for Socratic Interdisciplinary Instruction 2025-12-12
展开

Cultivating higher-order cognitive abilities -- such as knowledge integration, critical thinking, and creativity -- in modern STEM education necessitates a pedagogical shift from passive knowledge transmission to active Socratic construction. Although Large Language Models (LLMs) hold promise for STEM Interdisciplinary education, current methodologies employing Prompt Engineering (PE), Supervised Fine-tuning (SFT), or standard Reinforcement Learning (RL) often fall short of supporting this paradigm. Existing methods are hindered by three fundamental challenges: the inability to dynamically model latent student cognitive states; severe reward sparsity and delay inherent in long-term educational goals; and a tendency toward policy collapse lacking strategic diversity due to reliance on behavioral cloning. Recognizing the unobservability and dynamic complexity of these interactions, we formalize the Socratic Interdisciplinary Instructional Problem (SIIP) as a structured Partially Observable Markov Decision Process (POMDP), demanding simultaneous global exploration and fine-grained policy refinement. To this end, we propose ERL4SIIP, a novel Evolutionary Reinforcement Learning (ERL) framework specifically tailored for this domain. ERL4SIIP integrates: (1) a dynamic student simulator grounded in a STEM knowledge graph for latent state modeling; (2) a Hierarchical Reward Mechanism that decomposes long-horizon goals into dense signals; and (3) a LoRA-Division based optimization strategy coupling evolutionary algorithms for population-level global search with PPO for local gradient ascent.

3. sparse reward reinforcement learning

序号 标题 日期 摘要
1 What Fundamental Structure in Reward Functions Enables Efficient Sparse-Reward Learning? 2025-09-04
展开

Sparse-reward reinforcement learning (RL) remains fundamentally hard: without structure, any agent needs $Ω(

2 LLM-Driven Intrinsic Motivation for Sparse Reward Reinforcement Learning 2025-08-25
展开

This paper explores the combination of two intrinsic motivation strategies to improve the efficiency of reinforcement learning (RL) agents in environments with extreme sparse rewards, where traditional learning struggles due to infrequent positive feedback. We propose integrating Variational State as Intrinsic Reward (VSIMR), which uses Variational AutoEncoders (VAEs) to reward state novelty, with an intrinsic reward approach derived from Large Language Models (LLMs). The LLMs leverage their pre-trained knowledge to generate reward signals based on environment and goal descriptions, guiding the agent. We implemented this combined approach with an Actor-Critic (A2C) agent in the MiniGrid DoorKey environment, a benchmark for sparse rewards. Our empirical results show that this combined strategy significantly increases agent performance and sampling efficiency compared to using each strategy individually or a standard A2C agent, which failed to learn. Analysis of learning curves indicates that the combination effectively complements different aspects of the environment and task: VSIMR drives exploration of new states, while the LLM-derived rewards facilitate progressive exploitation towards goals.

3 SuperRL: Reinforcement Learning with Supervision to Boost Language Model Reasoning 2025-06-01
展开

Large language models are increasingly used for complex reasoning tasks where high-quality offline data such as expert-annotated solutions and distilled reasoning traces are often available. However, in environments with sparse rewards, reinforcement learning struggles to sample successful trajectories, leading to inefficient learning. At the same time, these offline trajectories that represent correct reasoning paths are not utilized by standard on-policy reinforcement learning methods. We introduce SuperRL, a unified training framework that adaptively alternates between RL and SFT. Whenever every rollout for a given instance receives zero reward, indicating the absence of a learning signal, SuperRL falls back to SFT on the curated offline data. Extensive experiments across diverse reasoning benchmarks show that SuperRL surpasses vanilla RL by delivering higher sample efficiency, stronger generalization, and improved robustness under sparse rewards.

4 DISCOVER: Automated Curricula for Sparse-Reward Reinforcement Learning 2025-05-26
展开

Sparse-reward reinforcement learning (RL) can model a wide range of highly complex tasks. Solving sparse-reward tasks is RL's core premise, requiring efficient exploration coupled with long-horizon credit assignment, and overcoming these challenges is key for building self-improving agents with superhuman ability. Prior work commonly explores with the objective of solving many sparse-reward tasks, making exploration of individual high-dimensional, long-horizon tasks intractable. We argue that solving such challenging tasks requires solving simpler tasks that are relevant to the target task, i.e., whose achieval will teach the agent skills required for solving the target task. We demonstrate that this sense of direction, necessary for effective exploration, can be extracted from existing RL algorithms, without leveraging any prior information. To this end, we propose a method for directed sparse-reward goal-conditioned very long-horizon RL (DISCOVER), which selects exploratory goals in the direction of the target task. We connect DISCOVER to principled exploration in bandits, formally bounding the time until the target task becomes achievable in terms of the agent's initial distance to the target, but independent of the volume of the space of all tasks. We then perform a thorough evaluation in high-dimensional environments. We find that the directed goal selection of DISCOVER solves exploration problems that are beyond the reach of prior state-of-the-art exploration methods in RL.

5 STAR-R1: Spatial TrAnsformation Reasoning by Reinforcing Multimodal LLMs 2025-05-21
展开

Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities across diverse tasks, yet they lag significantly behind humans in spatial reasoning. We investigate this gap through Transformation-Driven Visual Reasoning (TVR), a challenging task requiring identification of object transformations across images under varying viewpoints. While traditional Supervised Fine-Tuning (SFT) fails to generate coherent reasoning paths in cross-view settings, sparse-reward Reinforcement Learning (RL) suffers from inefficient exploration and slow convergence. To address these limitations, we propose STAR-R1, a novel framework that integrates a single-stage RL paradigm with a fine-grained reward mechanism tailored for TVR. Specifically, STAR-R1 rewards partial correctness while penalizing excessive enumeration and passive inaction, enabling efficient exploration and precise reasoning. Comprehensive evaluations demonstrate that STAR-R1 achieves state-of-the-art performance across all 11 metrics, outperforming SFT by 23% in cross-view scenarios. Further analysis reveals STAR-R1's anthropomorphic behavior and highlights its unique ability to compare all objects for improving spatial reasoning. Our work provides critical insights in advancing the research of MLLMs and reasoning models. The codes, model weights, and data will be publicly available at https://github.com/zongzhao23/STAR-R1.

6 Contextual Similarity Distillation: Ensemble Uncertainties with a Single Model 2025-03-14
展开

Uncertainty quantification is a critical aspect of reinforcement learning and deep learning, with numerous applications ranging from efficient exploration and stable offline reinforcement learning to outlier detection in medical diagnostics. The scale of modern neural networks, however, complicates the use of many theoretically well-motivated approaches such as full Bayesian inference. Approximate methods like deep ensembles can provide reliable uncertainty estimates but still remain computationally expensive. In this work, we propose contextual similarity distillation, a novel approach that explicitly estimates the variance of an ensemble of deep neural networks with a single model, without ever learning or evaluating such an ensemble in the first place. Our method builds on the predictable learning dynamics of wide neural networks, governed by the neural tangent kernel, to derive an efficient approximation of the predictive variance of an infinite ensemble. Specifically, we reinterpret the computation of ensemble variance as a supervised regression problem with kernel similarities as regression targets. The resulting model can estimate predictive variance at inference time with a single forward pass, and can make use of unlabeled target-domain data or data augmentations to refine its uncertainty estimates. We empirically validate our method across a variety of out-of-distribution detection benchmarks and sparse-reward reinforcement learning environments. We find that our single-model method performs competitively and sometimes superior to ensemble-based baselines and serves as a reliable signal for efficient exploration. These results, we believe, position contextual similarity distillation as a principled and scalable alternative for uncertainty quantification in reinforcement learning and general deep learning.

7 Hedging with Sparse Reward Reinforcement Learning 2025-03-06
展开

Derivatives, as a critical class of financial instruments, isolate and trade the price attributes of risk assets such as stocks, commodities, and indices, aiding risk management and enhancing market efficiency. However, traditional hedging models, constrained by assumptions such as continuous trading and zero transaction costs, fail to satisfy risk control requirements in complex and uncertain real-world markets. With advances in computing technology and deep learning, data-driven trading strategies are becoming increasingly prevalent. This thesis proposes a derivatives hedging framework integrating deep learning and reinforcement learning. The framework comprises a probabilistic forecasting model and a hedging agent, enabling market probability prediction, derivative pricing, and hedging. Specifically, we design a spatiotemporal attention-based probabilistic financial time series forecasting Transformer to address the scarcity of derivatives hedging data. A low-rank attention mechanism compresses high-dimensional assets into a low-dimensional latent space, capturing nonlinear asset relationships. The Transformer models sequential dependencies within this latent space, improving market probability forecasts and constructing an online training environment for downstream hedging tasks. Additionally, we incorporate generalized geometric Brownian motion to develop a risk-neutral pricing approach for derivatives. We model derivatives hedging as a reinforcement learning problem with sparse rewards and propose a behavior cloning-based recurrent proximal policy optimization (BC-RPPO) algorithm. This pretraining-finetuning framework significantly enhances the hedging agent's performance. Numerical experiments in the U.S. and Chinese financial markets demonstrate our method's superiority over traditional approaches.

8 Dense Dynamics-Aware Reward Synthesis: Integrating Prior Experience with Demonstrations 2024-12-02
展开

Many continuous control problems can be formulated as sparse-reward reinforcement learning (RL) tasks. In principle, online RL methods can automatically explore the state space to solve each new task. However, discovering sequences of actions that lead to a non-zero reward becomes exponentially more difficult as the task horizon increases. Manually shaping rewards can accelerate learning for a fixed task, but it is an arduous process that must be repeated for each new environment. We introduce a systematic reward-shaping framework that distills the information contained in 1) a task-agnostic prior data set and 2) a small number of task-specific expert demonstrations, and then uses these priors to synthesize dense dynamics-aware rewards for the given task. This supervision substantially accelerates learning in our experiments, and we provide analysis demonstrating how the approach can effectively guide online learning agents to faraway goals.

4. casual RL/counterfactual RL/casual reinforcement learning

序号 标题 日期 摘要
1 Should I Trust You? Detecting Deception in Negotiations using Counterfactual RL 2025-02-18
展开

An increasingly common socio-technical problem is people being taken in by offers that sound ``too good to be true'', where persuasion and trust shape decision-making. This paper investigates how \abr{ai} can help detect these deceptive scenarios. We analyze how humans strategically deceive each other in \textit{Diplomacy}, a board game that requires both natural language communication and strategic reasoning. This requires extracting logical forms of proposed agreements in player communications and computing the relative rewards of the proposal using agents' value functions. Combined with text-based features, this can improve our deception detection. Our method detects human deception with a high precision when compared to a Large Language Model approach that flags many true messages as deceptive. Future human-\abr{ai} interaction tools can build on our methods for deception detection by triggering \textit{friction} to give users a chance of interrogating suspicious proposals.

2 Sample-Efficient Reinforcement Learning via Counterfactual-Based Data Augmentation 2020-12-16
展开

Reinforcement learning (RL) algorithms usually require a substantial amount of interaction data and perform well only for specific tasks in a fixed environment. In some scenarios such as healthcare, however, usually only few records are available for each patient, and patients may show different responses to the same treatment, impeding the application of current RL algorithms to learn optimal policies. To address the issues of mechanism heterogeneity and related data scarcity, we propose a data-efficient RL algorithm that exploits structural causal models (SCMs) to model the state dynamics, which are estimated by leveraging both commonalities and differences across subjects. The learned SCM enables us to counterfactually reason what would have happened had another treatment been taken. It helps avoid real (possibly risky) exploration and mitigates the issue that limited experiences lead to biased policies. We propose counterfactual RL algorithms to learn both population-level and individual-level policies. We show that counterfactual outcomes are identifiable under mild conditions and that Q- learning on the counterfactual-based augmented data set converges to the optimal value function. Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed approach.

5. causal inference/causal discovery/counterfactual reasoning

序号 标题 日期 摘要
1 Causal Discovery with Mixed Latent Confounding via Precision Decomposition 2025-12-31
展开

We study causal discovery from observational data in linear Gaussian systems affected by \emph{mixed latent confounding}, where some unobserved factors act broadly across many variables while others influence only small subsets. This setting is common in practice and poses a challenge for existing methods: differentiable and score-based DAG learners can misinterpret global latent effects as causal edges, while latent-variable graphical models recover only undirected structure. We propose \textsc{DCL-DECOR}, a modular, precision-led pipeline that separates these roles. The method first isolates pervasive latent effects by decomposing the observed precision matrix into a structured component and a low-rank component. The structured component corresponds to the conditional distribution after accounting for pervasive confounders and retains only local dependence induced by the causal graph and localized confounding. A correlated-noise DAG learner is then applied to this deconfounded representation to recover directed edges while modeling remaining structured error correlations, followed by a simple reconciliation step to enforce bow-freeness. We provide identifiability results that characterize the recoverable causal target under mixed confounding and show how the overall problem reduces to well-studied subproblems with modular guarantees. Synthetic experiments that vary the strength and dimensionality of pervasive confounding demonstrate consistent improvements in directed edge recovery over applying correlated-noise DAG learning directly to the confounded data.

2 HOLOGRAPH: Active Causal Discovery via Sheaf-Theoretic Alignment of Large Language Model Priors 2025-12-30
展开

Causal discovery from observational data remains fundamentally limited by identifiability constraints. Recent work has explored leveraging Large Language Models (LLMs) as sources of prior causal knowledge, but existing approaches rely on heuristic integration that lacks theoretical grounding. We introduce HOLOGRAPH, a framework that formalizes LLM-guided causal discovery through sheaf theory--representing local causal beliefs as sections of a presheaf over variable subsets. Our key insight is that coherent global causal structure corresponds to the existence of a global section, while topological obstructions manifest as non-vanishing sheaf cohomology. We propose the Algebraic Latent Projection to handle hidden confounders and Natural Gradient Descent on the belief manifold for principled optimization. Experiments on synthetic and real-world benchmarks demonstrate that HOLOGRAPH provides rigorous mathematical foundations while achieving competitive performance on causal discovery tasks with 50-100 variables. Our sheaf-theoretic analysis reveals that while Identity, Transitivity, and Gluing axioms are satisfied to numerical precision (<10^{-6}), the Locality axiom fails for larger graphs, suggesting fundamental non-local coupling in latent variable projections. Code is available at https://github.com/hyunjun1121/holograph.

3 Counterfactual VLA: Self-Reflective Vision-Language-Action Model with Adaptive Reasoning 2025-12-30
展开

Recent reasoning-augmented Vision-Language-Action (VLA) models have improved the interpretability of end-to-end autonomous driving by generating intermediate reasoning traces. Yet these models primarily describe what they perceive and intend to do, rarely questioning whether their planned actions are safe or appropriate. This work introduces Counterfactual VLA (CF-VLA), a self-reflective VLA framework that enables the model to reason about and revise its planned actions before execution. CF-VLA first generates time-segmented meta-actions that summarize driving intent, and then performs counterfactual reasoning conditioned on both the meta-actions and the visual context. This step simulates potential outcomes, identifies unsafe behaviors, and outputs corrected meta-actions that guide the final trajectory generation. To efficiently obtain such self-reflective capabilities, we propose a rollout-filter-label pipeline that mines high-value scenes from a base (non-counterfactual) VLA's rollouts and labels counterfactual reasoning traces for subsequent training rounds. Experiments on large-scale driving datasets show that CF-VLA improves trajectory accuracy by up to 17.6%, enhances safety metrics by 20.5%, and exhibits adaptive thinking: it only enables counterfactual reasoning in challenging scenarios. By transforming reasoning traces from one-shot descriptions to causal self-correction signals, CF-VLA takes a step toward self-reflective autonomous driving agents that learn to think before they act.

4 Demystifying Proximal Causal Inference 2025-12-30
展开

Proximal causal inference (PCI) has emerged as a promising framework for identifying and estimating causal effects in the presence of unobserved confounders. While many traditional causal inference methods rely on the assumption of no unobserved confounding, this assumption is likely often violated. PCI mitigates this challenge by relying on an alternative set of assumptions regarding the relationships between treatment, outcome, and auxiliary variables that serve as proxies for unmeasured confounders. We review existing identification results, discuss the assumptions necessary for valid causal effect estimation via PCI, and compare different PCI estimation methods. We offer practical guidance on operationalizing PCI, with a focus on selecting and evaluating proxy variables using domain knowledge, measurement error perspectives, and negative control analogies. Through conceptual examples, we demonstrate tensions in proxy selection and discuss the importance of clearly defining the unobserved confounding mechanism. By bridging formal results with applied considerations, this work aims to demystify PCI, encourage thoughtful use in practice, and identify open directions for methodological development and empirical research.

5 Regret-Based Federated Causal Discovery with Unknown Interventions 2025-12-29
展开

Most causal discovery methods recover a completed partially directed acyclic graph representing a Markov equivalence class from observational data. Recent work has extended these methods to federated settings to address data decentralization and privacy constraints, but often under idealized assumptions that all clients share the same causal model. Such assumptions are unrealistic in practice, as client-specific policies or protocols, for example, across hospitals, naturally induce heterogeneous and unknown interventions. In this work, we address federated causal discovery under unknown client-level interventions. We propose I-PERI, a novel federated algorithm that first recovers the CPDAG of the union of client graphs and then orients additional edges by exploiting structural differences induced by interventions across clients. This yields a tighter equivalence class, which we call the $\mathbfΦ$-Markov Equivalence Class, represented by the $\mathbfΦ$-CPDAG. We provide theoretical guarantees on the convergence of I-PERI, as well as on its privacy-preserving properties, and present empirical evaluations on synthetic data demonstrating the effectiveness of the proposed algorithm.

6 Propensity Patchwork Kriging for Scalable Inference on Heterogeneous Treatment Effects 2025-12-29
展开

Gaussian process-based models are attractive for estimating heterogeneous treatment effects (HTE), but their computational cost limits scalability in causal inference settings. In this work, we address this challenge by extending Patchwork Kriging into the causal inference framework. Our proposed method partitions the data according to the estimated propensity score and applies Patchwork Kriging to enforce continuity of HTE estimates across adjacent regions. By imposing continuity constraints only along the propensity score dimension, rather than the full covariate space, the proposed approach substantially reduces computational cost while avoiding discontinuities inherent in simple local approximations. The resulting method can be interpreted as a smoothing extension of stratification and provides an efficient approach to HTE estimation. The proposed method is demonstrated through simulation studies and a real data application.

7 Probabilistic Modelling is Sufficient for Causal Inference 2025-12-29
展开

Causal inference is a key research area in machine learning, yet confusion reigns over the tools needed to tackle it. There are prevalent claims in the machine learning literature that you need a bespoke causal framework or notation to answer causal questions. In this paper, we want to make it clear that you \emph{can} answer any causal inference question within the realm of probabilistic modelling and inference, without causal-specific tools or notation. Through concrete examples, we demonstrate how causal questions can be tackled by writing down the probability of everything. Lastly, we reinterpret causal tools as emerging from standard probabilistic modelling and inference, elucidating their necessity and utility.

8 Counterfactual Harm: A Counter-argument 2025-12-28
展开

As AI systems are increasingly used to guide decisions, it is essential that they follow ethical principles. A core principle in medicine is non-maleficence, often equated with ``do no harm''. A formal definition of harm based on counterfactual reasoning has been proposed and popularized. This notion of harm has been promoted in simple settings with binary treatments and outcomes. Here, we highlight a problem with this definition in settings involving multiple treatment options. Illustrated by an example with three tuberculosis treatments (say, A, B, and C), we demonstrate that the counterfactual definition of harm can produce intransitive results: B is less harmful than A, C is less harmful than B, yet C is more harmful than A when compared pairwise. This intransitivity poses a challenge as it may lead to practical (clinical) decisions that are difficult to justify or defend. In contrast, an interventionist definition of harm based on expected utility forgoes counterfactual comparisons and ensures transitive treatment rankings.

9 Causal-Policy Forest for End-to-End Policy Learning 2025-12-28
展开

This study proposes an end-to-end algorithm for policy learning in causal inference. We observe data consisting of covariates, treatment assignments, and outcomes, where only the outcome corresponding to the assigned treatment is observed. The goal of policy learning is to train a policy from the observed data, where a policy is a function that recommends an optimal treatment for each individual, to maximize the policy value. In this study, we first show that maximizing the policy value is equivalent to minimizing the mean squared error for the conditional average treatment effect (CATE) under ${-1, 1}$ restricted regression models. Based on this finding, we modify the causal forest, an end-to-end CATE estimation algorithm, for policy learning. We refer to our algorithm as the causal-policy forest. Our algorithm has three advantages. First, it is a simple modification of an existing, widely used CATE estimation method, therefore, it helps bridge the gap between policy learning and CATE estimation in practice. Second, while existing studies typically estimate nuisance parameters for policy learning as a separate task, our algorithm trains the policy in a more end-to-end manner. Third, as in standard decision trees and random forests, we train the models efficiently, avoiding computational intractability.

10 Causal-driven attribution (CDA): Estimating channel influence without user-level data 2025-12-24
展开

Attribution modelling lies at the heart of marketing effectiveness, yet most existing approaches depend on user-level path data, which are increasingly inaccessible due to privacy regulations and platform restrictions. This paper introduces a Causal-Driven Attribution (CDA) framework that infers channel influence using only aggregated impression-level data, avoiding any reliance on user identifiers or click-path tracking. CDA integrates temporal causal discovery (using PCMCI) with causal effect estimation via a Structural Causal Model to recover directional channel relationships and quantify their contributions to conversions. Using large-scale synthetic data designed to replicate real marketing dynamics, we show that CDA achieves an average relative RMSE of 9.50% when given the true causal graph, and 24.23% when using the predicted graph, demonstrating strong accuracy under correct structure and meaningful signal recovery even under structural uncertainty. CDA captures cross-channel interdependencies while providing interpretable, privacy-preserving attribution insights, offering a scalable and future-proof alternative to traditional path-based models.

11 Information-theoretic signatures of causality in Bayesian networks and hypergraphs 2025-12-23
展开

Analyzing causality in multivariate systems involves establishing how information is generated, distributed and combined, and thus requires tools that capture interactions beyond pairwise relations. Higher-order information theory provides such tools. In particular, Partial Information Decomposition (PID) allows the decomposition of the information that a set of sources provides about a target into redundant, unique, and synergistic components. Yet the mathematical connection between such higher-order information-theoretic measures and causal structure remains undeveloped. Here we establish the first theoretical correspondence between PID components and causal structure in both Bayesian networks and hypergraphs. We first show that in Bayesian networks unique information precisely characterizes direct causal neighbors, while synergy identifies collider relationships. This establishes a localist causal discovery paradigm in which the structure surrounding each variable can be recovered from its immediate informational footprint, eliminating the need for global search over graph space. Extending these results to higher-order systems, we prove that PID signatures in Bayesian hypergraphs differentiate parents, children, co-heads, and co-tails, revealing a higher-order collider effect unique to multi-tail hyperedges. We also present procedures by which our results can be used to characterize systematically the causal structure of Bayesian networks and hypergraphs. Our results position PID as a rigorous, model-agnostic foundation for inferring both pairwise and higher-order causal structure, and introduce a fundamentally local information-theoretic viewpoint on causal discovery.

12 Causal Heterogeneous Graph Learning Method for Chronic Obstructive Pulmonary Disease Prediction 2025-12-22
展开

Due to the insufficient diagnosis and treatment capabilities at the grassroots level, there are still deficiencies in the early identification and early warning of acute exacerbation of Chronic obstructive pulmonary disease (COPD), often resulting in a high prevalence rate and high burden, but the screening rate is relatively low. In order to gradually improve this situation. In this paper, this study develop a Causal Heterogeneous Graph Representation Learning (CHGRL) method for COPD comorbidity risk prediction method that: a) constructing a heterogeneous Our dataset includes the interaction between patients and diseases; b) A cause-aware heterogeneous graph learning architecture has been constructed, combining causal inference mechanisms with heterogeneous graph learning, which can support heterogeneous graph causal learning for different types of relationships; and c) Incorporate the causal loss function in the model design, and add counterfactual reasoning learning loss and causal regularization loss on the basis of the cross-entropy classification loss. We evaluate our method and compare its performance with strong GNN baselines. Following experimental evaluation, the proposed model demonstrates high detection accuracy.

13 Explainable Artificial Intelligence for Economic Time Series: A Comprehensive Review and a Systematic Taxonomy of Methods and Concepts 2025-12-14
展开

Explainable Artificial Intelligence (XAI) is increasingly required in computational economics, where machine-learning forecasters can outperform classical econometric models but remain difficult to audit and use for policy. This survey reviews and organizes the growing literature on XAI for economic time series, where autocorrelation, non-stationarity, seasonality, mixed frequencies, and regime shifts can make standard explanation techniques unreliable or economically implausible. We propose a taxonomy that classifies methods by (i) explanation mechanism: propagation-based approaches (e.g., Integrated Gradients, Layer-wise Relevance Propagation), perturbation and game-theoretic attribution (e.g., permutation importance, LIME, SHAP), and function-based global tools (e.g., Accumulated Local Effects); (ii) time-series compatibility, including preservation of temporal dependence, stability over time, and respect for data-generating constraints. We synthesize time-series-specific adaptations such as vector- and window-based formulations (e.g., Vector SHAP, WindowSHAP) that reduce lag fragmentation and computational cost while improving interpretability. We also connect explainability to causal inference and policy analysis through interventional attributions (Causal Shapley values) and constrained counterfactual reasoning. Finally, we discuss intrinsically interpretable architectures (notably attention-based transformers) and provide guidance for decision-grade applications such as nowcasting, stress testing, and regime monitoring, emphasizing attribution uncertainty and explanation dynamics as indicators of structural change.

14 Compressed Causal Reasoning: Quantization and GraphRAG Effects on Interventional and Counterfactual Accuracy 2025-12-13
展开

Causal reasoning in Large Language Models spanning association, intervention, and counterfactual inference is essential for reliable decision making in high stakes settings. As deployment shifts toward edge and resource constrained environments, quantized models such as INT8 and NF4 are becoming standard. Yet the impact of precision reduction on formal causal reasoning is poorly understood. To our knowledge, this is the first study to systematically evaluate quantization effects across all three levels of Pearls Causal Ladder. Using a 3000 sample stratified CLadder benchmark, we find that rung level accuracy in Llama 3 8B remains broadly stable under quantization, with NF4 showing less than one percent overall degradation. Interventional queries at rung 2 are the most sensitive to precision loss, whereas counterfactual reasoning at rung 3 is comparatively stable but exhibits heterogeneous weaknesses across query types such as collider bias and backdoor adjustment. Experiments on the CRASS benchmark show near identical performance across precisions, indicating that existing commonsense counterfactual datasets lack the structural sensitivity needed to reveal quantization induced reasoning drift. We further evaluate Graph Retrieval Augmented Generation using ground truth causal graphs and observe a consistent improvement in NF4 interventional accuracy of plus 1.7 percent, partially offsetting compression related degradation. These results suggest that causal reasoning is unexpectedly robust to four bit quantization, graph structured augmentation can selectively reinforce interventional reasoning, and current counterfactual benchmarks fail to capture deeper causal brittleness. This work provides an initial empirical map of compressed causal reasoning and practical guidance for deploying efficient and structurally supported causal AI systems.

15 Systematic Reconstruction of Disease Networks from Longitudinal Blood Data for Causal Discovery and Intervention Analysis 2025-11-18
展开

We explore the hyperparameters and introduce a methodological framework to convert disease patterns from time series data of blood test results into correlation graphs for causal hypothesis exploration. The networks represent hypotheses that can then be validated or rejected both for causal discovery and causal analysis (under intervention). We synthetically recreated a repository of 105 typical disease longitudinal patterns extracted from medical guidance and research literature of common blood markers to build a systematic pipeline to translate multidimensional clinical data into intervenable disease networks for causal discovery and causal analysis. This study demonstrates that knowledge graphical models reconstructed from longitudinal data can transform routine medical data into clinically interpretable structures. By integrating multiple thresholding strategies and causal graph design, the framework has the purpose to move beyond statistical correlation toward clinically and testable inference networks. These results highlight a practical pathway for more transparent, explainable, and scalable tools in clinical decision support for AI training, precision healthcare and predictive medicine, offering interpretable, clinically actionable outputs that support safer use of AI in differential diagnosis.

16 Efficient Image-Goal Navigation with Representative Latent World Model 2025-11-14
展开

World models enable robots to conduct counterfactual reasoning in physical environments by predicting future world states. While conventional approaches often prioritize pixel-level reconstruction of future scenes, such detailed rendering is computationally intensive and unnecessary for planning tasks like navigation. We therefore propose that prediction and planning can be efficiently performed directly within a latent space of high-level semantic representations. To realize this, we introduce the Representative Latent space Navigation World Model (ReL-NWM). Rather than relying on reconstructionoriented latent embeddings, our method leverages a pre-trained representation encoder, DINOv3, and incorporates specialized mechanisms to effectively integrate action signals and historical context within this representation space. By operating entirely in the latent domain, our model bypasses expensive explicit reconstruction and achieves highly efficient navigation planning. Experiments show state-of-the-art trajectory prediction and image-goal navigation performance on multiple benchmarks. Additionally, we demonstrate real-world applicability by deploying the system on a Unitree G1 humanoid robot, confirming its efficiency and robustness in practical navigation scenarios.

17 Causal Graph Neural Networks for Healthcare 2025-11-04
展开

Healthcare artificial intelligence systems routinely fail when deployed across institutions, with documented performance drops and perpetuation of discriminatory patterns embedded in historical data. This brittleness stems, in part, from learning statistical associations rather than causal mechanisms. Causal graph neural networks address this triple crisis of distribution shift, discrimination, and inscrutability by combining graph-based representations of biomedical data with causal inference principles to learn invariant mechanisms rather than spurious correlations. This Review examines methodological foundations spanning structural causal models, disentangled causal representation learning, and techniques for interventional prediction and counterfactual reasoning on graphs. We analyse applications demonstrating clinical value across psychiatric diagnosis through brain network analysis, cancer subtyping via multi-omics causal integration, continuous physiological monitoring with mechanistic interpretation, and drug recommendation correcting prescription bias. These advances establish foundations for patient-specific Causal Digital Twins, enabling in silico clinical experimentation, with integration of large language models for hypothesis generation and causal graph neural networks for mechanistic validation. Substantial barriers remain, including computational requirements precluding real-time deployment, validation challenges demanding multi-modal evidence triangulation beyond cross-validation, and risks of causal-washing where methods employ causal terminology without rigorous evidentiary support. We propose tiered frameworks distinguishing causally-inspired architectures from causally-validated discoveries and identify critical research priorities making causal rather than purely associational claims.

18 GCVAMD: A Modified CausalVAE Model for Causal Age-related Macular Degeneration Risk Factor Detection and Prediction 2025-10-03
展开

Age Related Macular Degeneration(AMD) has been one of the most leading causes of permanent vision impairment in ophthalmology. Though treatments, such as anti VEGF drugs or photodynamic therapies, were developed to slow down the degenerative process of AMD, there is still no specific cure to reverse vision loss caused by AMD. Thus, for AMD, detecting existence of risk factors of AMD or AMD itself within the patient retina in early stages is a crucial task to reduce the possibility of vision impairment. Apart from traditional approaches, deep learning based methods, especially attention mechanism based CNNs and GradCAM based XAI analysis on OCT scans, exhibited successful performance in distinguishing AMD retina from normal retinas, making it possible to use AI driven models to aid medical diagnosis and analysis by ophthalmologists regarding AMD. However, though having significant success, previous works mostly focused on prediction performance itself, not pathologies or underlying causal mechanisms of AMD, which can prohibit intervention analysis on specific factors or even lead to less reliable decisions. Thus, this paper introduces a novel causal AMD analysis model: GCVAMD, which incorporates a modified CausalVAE approach that can extract latent causal factors from only raw OCT images. By considering causality in AMD detection, GCVAMD enables causal inference such as treatment simulation or intervention analysis regarding major risk factors: drusen and neovascularization, while returning informative latent causal features that can enhance downstream tasks. Results show that through GCVAMD, drusen status and neovascularization status can be identified with AMD causal mechanisms in GCVAMD latent spaces, which can in turn be used for various tasks from AMD detection(classification) to intervention analysis.

19 Hillclimb-Causal Inference: A Data-Driven Approach to Identify Causal Pathways Among Parental Behaviors, Genetic Risk, and Externalizing Behaviors in Children 2025-05-10
展开

Motivation: Externalizing behaviors in children, such as aggression, hyperactivity, and defiance, are influenced by complex interplays between genetic predispositions and environmental factors, particularly parental behaviors. Unraveling these intricate causal relationships can benefit from the use of robust data-driven methods. Methods: We developed a method called Hillclimb-Causal Inference, a causal discovery approach that integrates the Hill Climb Search algorithm with a customized Linear Gaussian Bayesian Information Criterion (BIC). This method was applied to data from the Adolescent Brain Cognitive Development (ABCD) Study, which included parental behavior assessments, children's genotypes, and externalizing behavior measures. We performed dimensionality reduction to address multicollinearity among parental behaviors and assessed children's genetic risk for externalizing disorders using polygenic risk scores (PRS), which were computed based on GWAS summary statistics from independent cohorts. Once the causal pathways were identified, we employed structural equation modeling (SEM) to quantify the relationships within the model. Results: We identified prominent causal pathways linking parental behaviors to children's externalizing outcomes. Parental alcohol misuse and broader behavioral issues exhibited notably stronger direct effects (0.33 and 0.20, respectively) compared to children's polygenic risk scores (0.07). Moreover, when considering both direct and indirect paths, parental substance misuse (alcohol, drug, and tobacco) collectively resulted in a total effect exceeding 1.1 on externalizing behaviors. Bootstrap and sensitivity analyses further validated the robustness of these findings.

20 Efficient estimation of average treatment effects with unmeasured confounding and proxies 2025-01-04
展开

Proximal causal inference provides a framework for estimating the average treatment effect (ATE) in the presence of unmeasured confounding by leveraging outcome and treatment proxies. Identification in this framework relies on the existence of a so-called bridge function. Standard approaches typically postulate a parametric specification for the bridge function, which is estimated in a first step and then plugged into an ATE estimator. However, this sequential procedure suffers from two potential sources of efficiency loss: (i) the difficulty of efficiently estimating a bridge function defined by an integral equation, and (ii) the failure to account for the correlation between the estimation steps. To overcome these limitations, we propose a novel approach that approximates the integral equation with increasing moment restrictions and jointly estimates the bridge function and the ATE. We show that, under suitable conditions, our estimator is efficient. Additionally, we provide a data-driven procedure for selecting the tuning parameter (i.e., the number of moment restrictions). Simulation studies reveal that the proposed method performs well in finite samples, and an application to the right heart catheterization dataset from the SUPPORT study demonstrates its practical value.

21 Proactive Recommendation in Social Networks: Steering User Interest with Causal Inference 2024-09-13
展开

Recommending items that solely cater to users' historical interests narrows users' horizons. Recent works have considered steering target users beyond their historical interests by directly adjusting items exposed to them. However, the recommended items for direct steering might not align perfectly with the evolution of users' interests, detrimentally affecting the target users' experience. To avoid this issue, we propose a new task named Proactive Recommendation in Social Networks (PRSN) that indirectly steers users' interest by utilizing the influence of social neighbors, i.e., indirect steering by adjusting the exposure of a target item to target users' neighbors. The key to PRSN lies in answering an interventional question: what would a target user' s feedback be on a target item if the item is exposed to the user' s different neighbors? To answer this question, we resort to causal inference and formalize PRSN as: (1) estimating the potential feedback of a user on an item, under the network interference by the item' s exposure to the user' s neighbors; and (2) adjusting the exposure of a target item to target users' neighbors to trade off steering performance and the damage to the neighbors' experience. To this end, we propose a Neighbor Interference Recommendation (NIRec) framework with two modules: (1) an interference representation-based estimation module for modeling potential feedback; (2) a post-learning-based optimization module for adjusting a target item' s exposure to trade off steering performance and the neighbors' experience through greedy search. We conduct extensive semi-simulation experiments on real-world datasets, validating the steering effectiveness of NIRec.

22 Scalable Causal Structure Learning via Amortized Conditional Independence Testing 2023-10-25
展开

Controlling false positives (Type I errors) through statistical hypothesis testing is a foundation of modern scientific data analysis. Existing causal structure discovery algorithms either do not provide Type I error control or cannot scale to the size of modern scientific datasets. We consider a variant of the causal discovery problem with two sets of nodes, where the only edges of interest form a bipartite causal subgraph between the sets. We develop Scalable Causal Structure Learning (SCSL), a method for causal structure discovery on bipartite subgraphs that provides Type I error control. SCSL recasts the discovery problem as a simultaneous hypothesis testing problem and uses discrete optimization over the set of possible confounders to obtain an upper bound on the test statistic for each edge. Semi-synthetic simulations demonstrate that SCSL scales to handle graphs with hundreds of nodes while maintaining error control and good power. We demonstrate the practical applicability of the method by applying it to a cancer dataset to reveal connections between somatic gene mutations and metastases to different tissues.

23 Graph Neural Networks for Causal Inference Under Network Confounding 2022-11-15
展开

This paper studies causal inference with observational data from a single large network. We consider a nonparametric model with interference in both potential outcomes and selection into treatment. Specifically, both stages may be the outcomes of simultaneous equations models, allowing for endogenous peer effects. This results in high-dimensional network confounding where the network and covariates of all units constitute sources of selection bias. In contrast, the existing literature assumes that confounding can be summarized by a known, low-dimensional function of these objects. We propose to use graph neural networks (GNNs) to adjust for network confounding. When interference decays with network distance, we argue that the model has low-dimensional structure that makes estimation feasible and justifies the use of shallow GNN architectures.

6. video super resolution

序号 标题 日期 摘要
1 Stream-DiffVSR: Low-Latency Streamable Video Super-Resolution via Auto-Regressive Diffusion 2025-12-29
展开

Diffusion-based video super-resolution (VSR) methods achieve strong perceptual quality but remain impractical for latency-sensitive settings due to reliance on future frames and expensive multi-step denoising. We propose Stream-DiffVSR, a causally conditioned diffusion framework for efficient online VSR. Operating strictly on past frames, it combines a four-step distilled denoiser for fast inference, an Auto-regressive Temporal Guidance (ARTG) module that injects motion-aligned cues during latent denoising, and a lightweight temporal-aware decoder with a Temporal Processor Module (TPM) that enhances detail and temporal coherence. Stream-DiffVSR processes 720p frames in 0.328 seconds on an RTX4090 GPU and significantly outperforms prior diffusion-based methods. Compared with the online SOTA TMP, it boosts perceptual quality (LPIPS +0.095) while reducing latency by over 130x. Stream-DiffVSR achieves the lowest latency reported for diffusion-based VSR, reducing initial delay from over 4600 seconds to 0.328 seconds, thereby making it the first diffusion VSR method suitable for low-latency online deployment. Project page: https://jamichss.github.io/stream-diffvsr-project-page/

2 FMA-Net++: Motion- and Exposure-Aware Real-World Joint Video Super-Resolution and Deblurring 2025-12-04
展开

Real-world video restoration is plagued by complex degradations from motion coupled with dynamically varying exposure - a key challenge largely overlooked by prior works and a common artifact of auto-exposure or low-light capture. We present FMA-Net++, a framework for joint video super-resolution and deblurring that explicitly models this coupled effect of motion and dynamically varying exposure. FMA-Net++ adopts a sequence-level architecture built from Hierarchical Refinement with Bidirectional Propagation blocks, enabling parallel, long-range temporal modeling. Within each block, an Exposure Time-aware Modulation layer conditions features on per-frame exposure, which in turn drives an exposure-aware Flow-Guided Dynamic Filtering module to infer motion- and exposure-aware degradation kernels. FMA-Net++ decouples degradation learning from restoration: the former predicts exposure- and motion-aware priors to guide the latter, improving both accuracy and efficiency. To evaluate under realistic capture conditions, we introduce REDS-ME (multi-exposure) and REDS-RE (random-exposure) benchmarks. Trained solely on synthetic data, FMA-Net++ achieves state-of-the-art accuracy and temporal consistency on our new benchmarks and GoPro, outperforming recent methods in both restoration quality and inference speed, and generalizes well to challenging real-world videos.

3 HunyuanVideo 1.5 Technical Report 2025-11-24
展开

We present HunyuanVideo 1.5, a lightweight yet powerful open-source video generation model that achieves state-of-the-art visual quality and motion coherence with only 8.3 billion parameters, enabling efficient inference on consumer-grade GPUs. This achievement is built upon several key components, including meticulous data curation, an advanced DiT architecture featuring selective and sliding tile attention (SSTA), enhanced bilingual understanding through glyph-aware text encoding, progressive pre-training and post-training, and an efficient video super-resolution network. Leveraging these designs, we developed a unified framework capable of high-quality text-to-video and image-to-video generation across multiple durations and resolutions. Extensive experiments demonstrate that this compact and proficient model establishes a new state-of-the-art among open-source video generation models. By releasing the code and model weights, we provide the community with a high-performance foundation that lowers the barrier to video creation and research, making advanced video generation accessible to a broader audience. All open-source assets are publicly available at https://github.com/Tencent-Hunyuan/HunyuanVideo-1.5.

4 STCDiT: Spatio-Temporally Consistent Diffusion Transformer for High-Quality Video Super-Resolution 2025-11-24
展开

We present STCDiT, a video super-resolution framework built upon a pre-trained video diffusion model, aiming to restore structurally faithful and temporally stable videos from degraded inputs, even under complex camera motions. The main challenges lie in maintaining temporal stability during reconstruction and preserving structural fidelity during generation. To address these challenges, we first develop a motion-aware VAE reconstruction method that performs segment-wise reconstruction, with each segment clip exhibiting uniform motion characteristic, thereby effectively handling videos with complex camera motions. Moreover, we observe that the first-frame latent extracted by the VAE encoder in each clip, termed the anchor-frame latent, remains unaffected by temporal compression and retains richer spatial structural information than subsequent frame latents. We further develop an anchor-frame guidance approach that leverages structural information from anchor frames to constrain the generation process and improve structural fidelity of video features. Coupling these two designs enables the video diffusion model to achieve high-quality video super-resolution. Extensive experiments show that STCDiT outperforms state-of-the-art methods in terms of structural fidelity and temporal consistency.

5 Rethinking Diffusion Model-Based Video Super-Resolution: Leveraging Dense Guidance from Aligned Features 2025-11-21
展开

Diffusion model (DM) based Video Super-Resolution (VSR) approaches achieve impressive perceptual quality. However, they suffer from error accumulation, spatial artifacts, and a trade-off between perceptual quality and fidelity, primarily caused by inaccurate alignment and insufficient compensation between video frames. In this paper, within the DM-based VSR pipeline, we revisit the role of alignment and compensation between adjacent video frames and reveal two crucial observations: (a) the feature domain is better suited than the pixel domain for information compensation due to its stronger spatial and temporal correlations, and (b) warping at an upscaled resolution better preserves high-frequency information, but this benefit is not necessarily monotonic. Therefore, we propose a novel Densely Guided diffusion model with Aligned Features for Video Super-Resolution (DGAF-VSR), with an Optical Guided Warping Module (OGWM) to maintain high-frequency details in the aligned features and a Feature-wise Temporal Condition Module (FTCM) to deliver dense guidance in the feature domain. Extensive experiments on synthetic and real-world datasets demonstrate that DGAF-VSR surpasses state-of-the-art methods in key aspects of VSR, including perceptual quality (35.82% DISTS reduction), fidelity (0.20 dB PSNR gain), and temporal consistency (30.37% tLPIPS reduction).

6 MambaOVSR: Multiscale Fusion with Global Motion Modeling for Chinese Opera Video Super-Resolution 2025-11-09
展开

Chinese opera is celebrated for preserving classical art. However, early filming equipment limitations have degraded videos of last-century performances by renowned artists (e.g., low frame rates and resolution), hindering archival efforts. Although space-time video super-resolution (STVSR) has advanced significantly, applying it directly to opera videos remains challenging. The scarcity of datasets impedes the recovery of high frequency details, and existing STVSR methods lack global modeling capabilities, compromising visual quality when handling opera's characteristic large motions. To address these challenges, we pioneer a large scale Chinese Opera Video Clip (COVC) dataset and propose the Mamba-based multiscale fusion network for space-time Opera Video Super-Resolution (MambaOVSR). Specifically, MambaOVSR involves three novel components: the Global Fusion Module (GFM) for motion modeling through a multiscale alternating scanning mechanism, and the Multiscale Synergistic Mamba Module (MSMM) for alignment across different sequence lengths. Additionally, our MambaVR block resolves feature artifacts and positional information loss during alignment. Experimental results on the COVC dataset show that MambaOVSR significantly outperforms the SOTA STVSR method by an average of 1.86 dB in terms of PSNR. Dataset and Code will be publicly released.

7 VividFace: High-Quality and Efficient One-Step Diffusion For Video Face Enhancement 2025-09-28
展开

Video Face Enhancement (VFE) aims to restore high-quality facial regions from degraded video sequences, enabling a wide range of practical applications. Despite substantial progress in the field, current methods that primarily rely on video super-resolution and generative frameworks continue to face three fundamental challenges: (1) computational inefficiency caused by iterative multi-step denoising in diffusion models; (2) faithfully modeling intricate facial textures while preserving temporal consistency; and (3) limited model generalization due to the lack of high-quality face video training data. To address these challenges, we propose VividFace, a novel and efficient one-step diffusion framework for VFE. Built upon the pretrained WANX video generation model, VividFace reformulates the traditional multi-step diffusion process as a single-step flow matching paradigm that directly maps degraded inputs to high-quality outputs with significantly reduced inference time. To enhance facial detail recovery, we introduce a Joint Latent-Pixel Face-Focused Training strategy that constructs spatiotemporally aligned facial masks to guide optimization toward critical facial regions in both latent and pixel spaces. Furthermore, we develop an MLLM-driven automated filtering pipeline that produces MLLM-Face90, a meticulously curated high-quality face video dataset, ensuring models learn from photorealistic facial textures. Extensive experiments demonstrate that VividFace achieves superior performance in perceptual quality, identity preservation, and temporal consistency across both synthetic and real-world benchmarks. We will publicly release our code, models, and dataset to support future research.

8 Bridging Diffusion Models and 3D Representations: A 3D Consistent Super-Resolution Framework 2025-08-06
展开

We propose 3D Super Resolution (3DSR), a novel 3D Gaussian-splatting-based super-resolution framework that leverages off-the-shelf diffusion-based 2D super-resolution models. 3DSR encourages 3D consistency across views via the use of an explicit 3D Gaussian-splatting-based scene representation. This makes the proposed 3DSR different from prior work, such as image upsampling or the use of video super-resolution, which either don't consider 3D consistency or aim to incorporate 3D consistency implicitly. Notably, our method enhances visual quality without additional fine-tuning, ensuring spatial coherence within the reconstructed scene. We evaluate 3DSR on MipNeRF360 and LLFF data, demonstrating that it produces high-resolution results that are visually compelling, while maintaining structural consistency in 3D reconstructions.

7. knowledge graph/knowledge distillation/knowledge representation/knowledge transfer/knowledge embedding

序号 标题 日期 摘要
1 MedKGI: Iterative Differential Diagnosis with Medical Knowledge Graphs and Information-Guided Inquiring 2025-12-30
展开

Recent advancements in Large Language Models (LLMs) have demonstrated significant promise in clinical diagnosis. However, current models struggle to emulate the iterative, diagnostic hypothesis-driven reasoning of real clinical scenarios. Specifically, current LLMs suffer from three critical limitations: (1) generating hallucinated medical content due to weak grounding in verified knowledge, (2) asking redundant or inefficient questions rather than discriminative ones that hinder diagnostic progress, and (3) losing coherence over multi-turn dialogues, leading to contradictory or inconsistent conclusions. To address these challenges, we propose MedKGI, a diagnostic framework grounded in clinical practices. MedKGI integrates a medical knowledge graph (KG) to constrain reasoning to validated medical ontologies, selects questions based on information gain to maximize diagnostic efficiency, and adopts an OSCE-format structured state to maintain consistent evidence tracking across turns. Experiments on clinical benchmarks show that MedKGI outperforms strong LLM baselines in both diagnostic accuracy and inquiry efficiency, improving dialogue efficiency by 30% on average while maintaining state-of-the-art accuracy.

2 Efficient Deep Learning for Short-Term Solar Irradiance Time Series Forecasting: A Benchmark Study in Ho Chi Minh City 2025-12-29
展开

Reliable forecasting of Global Horizontal Irradiance (GHI) is essential for mitigating the variability of solar energy in power grids. This study presents a comprehensive benchmark of ten deep learning architectures for short-term (1-hour ahead) GHI time series forecasting in Ho Chi Minh City, leveraging high-resolution NSRDB satellite data (2011-2020) to compare established baselines (e.g. LSTM, TCN) against emerging state-of-the-art architectures, including Transformer, Informer, iTransformer, TSMixer, and Mamba. Experimental results identify the Transformer as the superior architecture, achieving the highest predictive accuracy with an R^2 of 0.9696. The study further utilizes SHAP analysis to contrast the temporal reasoning of these architectures, revealing that Transformers exhibit a strong "recency bias" focused on immediate atmospheric conditions, whereas Mamba explicitly leverages 24-hour periodic dependencies to inform predictions. Furthermore, we demonstrate that Knowledge Distillation can compress the high-performance Transformer by 23.5% while surprisingly reducing error (MAE: 23.78 W/m^2), offering a proven pathway for deploying sophisticated, low-latency forecasting on resource-constrained edge devices.

3 CASCADE: Cumulative Agentic Skill Creation through Autonomous Development and Evolution 2025-12-29
展开

Large language model (LLM) agents currently depend on predefined tools or brittle tool generation, constraining their capability and adaptability to complex scientific tasks. We introduce CASCADE, a self-evolving agentic framework representing an early instantiation of the transition from "LLM + tool use" to "LLM + skill acquisition". CASCADE enables agents to master complex external tools and codify knowledge through two meta-skills: continuous learning via web search and code extraction, and self-reflection via introspection and knowledge graph exploration, among others. We evaluate CASCADE on SciSkillBench, a benchmark of 116 materials science and chemistry research tasks. CASCADE achieves a 93.3% success rate using GPT-5, compared to 35.4% without evolution mechanisms. We further demonstrate real-world applications in computational analysis, autonomous laboratory experiments, and selective reproduction of published papers. Along with human-agent collaboration and memory consolidation, CASCADE accumulates executable skills that can be shared across agents and scientists, moving toward scalable AI-assisted scientific research.

4 Lie to Me: Knowledge Graphs for Robust Hallucination Self-Detection in LLMs 2025-12-29
展开

Hallucinations, the generation of apparently convincing yet false statements, remain a major barrier to the safe deployment of LLMs. Building on the strong performance of self-detection methods, we examine the use of structured knowledge representations, namely knowledge graphs, to improve hallucination self-detection. Specifically, we propose a simple yet powerful approach that enriches hallucination self-detection by (i) converting LLM responses into knowledge graphs of entities and relations, and (ii) using these graphs to estimate the likelihood that a response contains hallucinations. We evaluate the proposed approach using two widely used LLMs, GPT-4o and Gemini-2.5-Flash, across two hallucination detection datasets. To support more reliable future benchmarking, one of these datasets has been manually curated and enhanced and is released as a secondary outcome of this work. Compared to standard self-detection methods and SelfCheckGPT, a state-of-the-art approach, our method achieves up to 16% relative improvement in accuracy and 20% in F1-score. Our results show that LLMs can better analyse atomic facts when they are structured as knowledge graphs, even when initial outputs contain inaccuracies. This low-cost, model-agnostic approach paves the way toward safer and more trustworthy language models.

5 ClinDEF: A Dynamic Evaluation Framework for Large Language Models in Clinical Reasoning 2025-12-29
展开

Clinical diagnosis begins with doctor-patient interaction, during which physicians iteratively gather information, determine examination and refine differential diagnosis through patients' response. This dynamic clinical-reasoning process is poorly represented by existing LLM benchmarks that focus on static question-answering. To mitigate these gaps, recent methods explore dynamic medical frameworks involving interactive clinical dialogues. Although effective, they often rely on limited, contamination-prone datasets and lack granular, multi-level evaluation. In this work, we propose ClinDEF, a dynamic framework for assessing clinical reasoning in LLMs through simulated diagnostic dialogues. Grounded in a disease knowledge graph, our method dynamically generates patient cases and facilitates multi-turn interactions between an LLM-based doctor and an automated patient agent. Our evaluation protocol goes beyond diagnostic accuracy by incorporating fine-grained efficiency analysis and rubric-based assessment of diagnostic quality. Experiments show that ClinDEF effectively exposes critical clinical reasoning gaps in state-of-the-art LLMs, offering a more nuanced and clinically meaningful evaluation paradigm.

6 YOLO-IOD: Towards Real Time Incremental Object Detection 2025-12-28
展开

Current methods for incremental object detection (IOD) primarily rely on Faster R-CNN or DETR series detectors; however, these approaches do not accommodate the real-time YOLO detection frameworks. In this paper, we first identify three primary types of knowledge conflicts that contribute to catastrophic forgetting in YOLO-based incremental detectors: foreground-background confusion, parameter interference, and misaligned knowledge distillation. Subsequently, we introduce YOLO-IOD, a real-time Incremental Object Detection (IOD) framework that is constructed upon the pretrained YOLO-World model, facilitating incremental learning via a stage-wise parameter-efficient fine-tuning process. Specifically, YOLO-IOD encompasses three principal components: 1) Conflict-Aware Pseudo-Label Refinement (CPR), which mitigates the foreground-background confusion by leveraging the confidence levels of pseudo labels and identifying potential objects relevant to future tasks. 2) Importancebased Kernel Selection (IKS), which identifies and updates the pivotal convolution kernels pertinent to the current task during the current learning stage. 3) Cross-Stage Asymmetric Knowledge Distillation (CAKD), which addresses the misaligned knowledge distillation conflict by transmitting the features of the student target detector through the detection heads of both the previous and current teacher detectors, thereby facilitating asymmetric distillation between existing and newly introduced categories. We further introduce LoCo COCO, a more realistic benchmark that eliminates data leakage across stages. Experiments on both conventional and LoCo COCO benchmarks show that YOLO-IOD achieves superior performance with minimal forgetting.

7 Scalpel-SAM: A Semi-Supervised Paradigm for Adapting SAM to Infrared Small Object Detection 2025-12-27
展开

Infrared small object detection urgently requires semi-supervised paradigms due to the high cost of annotation. However, existing methods like SAM face significant challenges of domain gaps, inability of encoding physical priors, and inherent architectural complexity. To address this, we designed a Hierarchical MoE Adapter consisting of four white-box neural operators. Building upon this core component, we propose a two-stage paradigm for knowledge distillation and transfer: (1) Prior-Guided Knowledge Distillation, where we use our MoE adapter and 10% of available fully supervised data to distill SAM into an expert teacher (Scalpel-SAM); and (2) Deployment-Oriented Knowledge Transfer, where we use Scalpel-SAM to generate pseudo labels for training lightweight and efficient downstream models. Experiments demonstrate that with minimal annotations, our paradigm enables downstream models to achieve performance comparable to, or even surpassing, their fully supervised counterparts. To our knowledge, this is the first semi-supervised paradigm that systematically addresses the data scarcity issue in IR-SOT using SAM as the teacher model.

8 Lightweight Inference-Time Personalization for Frozen Knowledge Graph Embeddings 2025-12-26
展开

Foundation models for knowledge graphs (KGs) achieve strong cohort-level performance in link prediction, yet fail to capture individual user preferences; a key disconnect between general relational reasoning and personalized ranking. We propose GatedBias, a lightweight inference-time personalization framework that adapts frozen KG embeddings to individual user contexts without retraining or compromising global accuracy. Our approach introduces structure-gated adaptation: profile-specific features combine with graph-derived binary gates to produce interpretable, per-entity biases, requiring only ${\sim}300$ trainable parameters. We evaluate GatedBias on two benchmark datasets (Amazon-Book and Last-FM), demonstrating statistically significant improvements in alignment metrics while preserving cohort performance. Counterfactual perturbation experiments validate causal responsiveness; entities benefiting from specific preference signals show 6--30$\times$ greater rank improvements when those signals are boosted. These results show that personalized adaptation of foundation models can be both parameter-efficient and causally verifiable, bridging general knowledge representations with individual user needs.

9 LLMBoost: Make Large Language Models Stronger with Boosting 2025-12-26
展开

Ensemble learning of LLMs has emerged as a promising alternative to enhance performance, but existing approaches typically treat models as black boxes, combining the inputs or final outputs while overlooking the rich internal representations and interactions across models.In this work, we introduce LLMBoost, a novel ensemble fine-tuning framework that breaks this barrier by explicitly leveraging intermediate states of LLMs. Inspired by the boosting paradigm, LLMBoost incorporates three key innovations. First, a cross-model attention mechanism enables successor models to access and fuse hidden states from predecessors, facilitating hierarchical error correction and knowledge transfer. Second, a chain training paradigm progressively fine-tunes connected models with an error-suppression objective, ensuring that each model rectifies the mispredictions of its predecessor with minimal additional computation. Third, a near-parallel inference paradigm design pipelines hidden states across models layer by layer, achieving inference efficiency approaching single-model decoding. We further establish the theoretical foundations of LLMBoost, proving that sequential integration guarantees monotonic improvements under bounded correction assumptions. Extensive experiments on commonsense reasoning and arithmetic reasoning tasks demonstrate that LLMBoost consistently boosts accuracy while reducing inference latency.

10 PortionNet: Distilling 3D Geometric Knowledge for Food Nutrition Estimation 2025-12-26
展开

Accurate food nutrition estimation from single images is challenging due to the loss of 3D information. While depth-based methods provide reliable geometry, they remain inaccessible on most smartphones because of depth-sensor requirements. To overcome this challenge, we propose PortionNet, a novel cross-modal knowledge distillation framework that learns geometric features from point clouds during training while requiring only RGB images at inference. Our approach employs a dual-mode training strategy where a lightweight adapter network mimics point cloud representations, enabling pseudo-3D reasoning without any specialized hardware requirements. PortionNet achieves state-of-the-art performance on MetaFood3D, outperforming all previous methods in both volume and energy estimation. Cross-dataset evaluation on SimpleFood45 further demonstrates strong generalization in energy estimation.

11 KG20C & KG20C-QA: Scholarly Knowledge Graph Benchmarks for Link Prediction and Question Answering 2025-12-25
展开

In this paper, we present KG20C and KG20C-QA, two curated datasets for advancing question answering (QA) research on scholarly data. KG20C is a high-quality scholarly knowledge graph constructed from the Microsoft Academic Graph through targeted selection of venues, quality-based filtering, and schema definition. Although KG20C has been available online in non-peer-reviewed sources such as GitHub repository, this paper provides the first formal, peer-reviewed description of the dataset, including clear documentation of its construction and specifications. KG20C-QA is built upon KG20C to support QA tasks on scholarly data. We define a set of QA templates that convert graph triples into natural language question--answer pairs, producing a benchmark that can be used both with graph-based models such as knowledge graph embeddings and with text-based models such as large language models. We benchmark standard knowledge graph embedding methods on KG20C-QA, analyze performance across relation types, and provide reproducible evaluation protocols. By officially releasing these datasets with thorough documentation, we aim to contribute a reusable, extensible resource for the research community, enabling future work in QA, reasoning, and knowledge-driven applications in the scholarly domain. The full datasets will be released at https://github.com/tranhungnghiep/KG20C/ upon paper publication.

12 A-QCF-Net: An Adaptive Quaternion Cross-Fusion Network for Multimodal Liver Tumor Segmentation from Unpaired Datasets 2025-12-25
展开

Multimodal medical imaging provides complementary information that is crucial for accurate delineation of pathology, but the development of deep learning models is limited by the scarcity of large datasets in which different modalities are paired and spatially aligned. This paper addresses this fundamental limitation by proposing an Adaptive Quaternion Cross-Fusion Network (A-QCF-Net) that learns a single unified segmentation model from completely separate and unpaired CT and MRI cohorts. The architecture exploits the parameter efficiency and expressive power of Quaternion Neural Networks to construct a shared feature space. At its core is the Adaptive Quaternion Cross-Fusion (A-QCF) block, a data driven attention module that enables bidirectional knowledge transfer between the two streams. By learning to modulate the flow of information dynamically, the A-QCF block allows the network to exchange abstract modality specific expertise, such as the sharp anatomical boundary information available in CT and the subtle soft tissue contrast provided by MRI. This mutual exchange regularizes and enriches the feature representations of both streams. We validate the framework by jointly training a single model on the unpaired LiTS (CT) and ATLAS (MRI) datasets. The jointly trained model achieves Tumor Dice scores of 76.7% on CT and 78.3% on MRI, significantly exceeding the strong unimodal nnU-Net baseline by margins of 5.4% and 4.7% respectively. Furthermore, comprehensive explainability analysis using Grad-CAM and Grad-CAM++ confirms that the model correctly focuses on relevant pathological structures, ensuring the learned representations are clinically meaningful. This provides a robust and clinically viable paradigm for unlocking the large unpaired imaging archives that are common in healthcare.

13 Interpretable Perturbation Modeling Through Biomedical Knowledge Graphs 2025-12-24
展开

Understanding how small molecules perturb gene expression is essential for uncovering drug mechanisms, predicting off-target effects, and identifying repurposing opportunities. While prior deep learning frameworks have integrated multimodal embeddings into biomedical knowledge graphs (BKGs) and further improved these representations through graph neural network message-passing paradigms, these models have been applied to tasks such as link prediction and binary drug-disease association, rather than the task of gene perturbation, which may unveil more about mechanistic transcriptomic effects. To address this gap, we construct a merged biomedical graph that integrates (i) PrimeKG++, an augmentation of PrimeKG containing semantically rich embeddings for nodes with (ii) LINCS L1000 drug and cell line nodes, initialized with multimodal embeddings from foundation models such as MolFormerXL and BioBERT. Using this heterogeneous graph, we train a graph attention network (GAT) with a downstream prediction head that learns the delta expression profile of over 978 landmark genes for a given drug-cell pair. Our results show that our framework outperforms MLP baselines for differentially expressed genes (DEG) -- which predict the delta expression given a concatenated embedding of drug features, target features, and baseline cell expression -- under the scaffold and random splits. Ablation experiments with edge shuffling and node feature randomization further demonstrate that the edges provided by biomedical KGs enhance perturbation-level prediction. More broadly, our framework provides a path toward mechanistic drug modeling: moving beyond binary drug-disease association tasks to granular transcriptional effects of therapeutic intervention.

14 DK-STN: A Domain Knowledge Embedded Spatio-Temporal Network Model for MJO Forecast 2025-12-22
展开

Understanding and predicting the Madden-Julian Oscillation (MJO) is fundamental for precipitation forecasting and disaster prevention. To date, long-term and accurate MJO prediction has remained a challenge for researchers. Conventional MJO prediction methods using Numerical Weather Prediction (NWP) are resource-intensive, time-consuming, and highly unstable (most NWP methods are sensitive to seasons, with better MJO forecast results in winter). While existing Artificial Neural Network (ANN) methods save resources and speed forecasting, their accuracy never reaches the 28 days predicted by the state-of-the-art NWP method, i.e., the operational forecasts from ECMWF, since neural networks cannot handle climate data effectively. In this paper, we present a Domain Knowledge Embedded Spatio-Temporal Network (DK-STN), a stable neural network model for accurate and efficient MJO forecasting. It combines the benefits of NWP and ANN methods and successfully improves the forecast accuracy of ANN methods while maintaining a high level of efficiency and stability. We begin with a spatial-temporal network (STN) and embed domain knowledge in it using two key methods: (i) applying a domain knowledge enhancement method and (ii) integrating a domain knowledge processing method into network training. We evaluated DK-STN with the 5th generation of ECMWF reanalysis (ERA5) data and compared it with ECMWF. Given 7 days of climate data as input, DK-STN can generate reliable forecasts for the following 28 days in 1-2 seconds, with an error of only 2-3 days in different seasons. DK-STN significantly exceeds ECMWF in that its forecast accuracy is equivalent to ECMWF's, while its efficiency and stability are significantly superior.

15 $γ(3,4)$ `Attention' in Cognitive Agents: Ontology-Free Knowledge Representations With Promise Theoretic Semantics 2025-12-22
展开

The semantics and dynamics of attention' are closely related to promise theoretic notions developed for autonomous agents and can thus easily be written down in promise framework. In this way one may establish a bridge between vectorized Machine Learning and Knowledge Graph representations without relying on language models implicitly. Our expectations for knowledge presume a degree of statistical stability, i.e. average invariance under repeated observation, or trust' in the data. Both learning networks and knowledge graph representations can meaningfully coexist to preserve different aspects of data. While vectorized data are useful for probabilistic estimation, graphs preserve the intentionality of the source even under data fractionation. Using a Semantic Spacetime $γ(3,4)$ graph, one avoids complex ontologies in favour of classification of features by their roles in semantic processes. The latter favours an approach to reasoning under conditions of uncertainty. Appropriate attention to causal boundary conditions may lead to orders of magnitude compression of data required for such context determination, as required in the contexts of autonomous robotics, defence deployments, and ad hoc emergency services.

16 LinkedOut: Linking World Knowledge Representation Out of Video LLM for Next-Generation Video Recommendation 2025-12-18
展开

Video Large Language Models (VLLMs) unlock world-knowledge-aware video understanding through pretraining on internet-scale data and have already shown promise on tasks such as movie analysis and video question answering. However, deploying VLLMs for downstream tasks such as video recommendation remains challenging, since real systems require multi-video inputs, lightweight backbones, low-latency sequential inference, and rapid response. In practice, (1) decode-only generation yields high latency for sequential inference, (2) typical interfaces do not support multi-video inputs, and (3) constraining outputs to language discards fine-grained visual details that matter for downstream vision tasks. We argue that these limitations stem from the absence of a representation that preserves pixel-level detail while leveraging world knowledge. We present LinkedOut, a representation that extracts VLLM world knowledge directly from video to enable fast inference, supports multi-video histories, and removes the language bottleneck. LinkedOut extracts semantically grounded, knowledge-aware tokens from raw frames using VLLMs, guided by promptable queries and optional auxiliary modalities. We introduce a cross-layer knowledge fusion MoE that selects the appropriate level of abstraction from the rich VLLM features, enabling personalized, interpretable, and low-latency recommendation. To our knowledge, LinkedOut is the first VLLM-based video recommendation method that operates on raw frames without handcrafted labels, achieving state-of-the-art results on standard benchmarks. Interpretability studies and ablations confirm the benefits of layer diversity and layer-wise fusion, pointing to a practical path that fully leverages VLLM world-knowledge priors and visual reasoning for downstream vision tasks such as recommendation.

17 Dynamic stacking ensemble learning with investor knowledge representations for stock market index prediction based on multi-source financial data 2025-12-16
展开

The patterns of different financial data sources vary substantially, and accordingly, investors exhibit heterogeneous cognition behavior in information processing. To capture different patterns, we propose a novel approach called the two-stage dynamic stacking ensemble model based on investor knowledge representations, which aims to effectively extract and integrate the features from multi-source financial data. In the first stage, we identify different financial data property from global stock market indices, industrial indices, and financial news based on the perspective of investors. And then, we design appropriate neural network architectures tailored to these properties to generate effective feature representations. Based on learned feature representations, we design multiple meta-classifiers and dynamically select the optimal one for each time window, enabling the model to effectively capture and learn the distinct patterns that emerge across different temporal periods. To evaluate the performance of the proposed model, we apply it to predicting the daily movement of Shanghai Securities Composite index, SZSE Component index and Growth Enterprise index in Chinese stock market. The experimental results demonstrate the effectiveness of our model in improving the prediction performance. In terms of accuracy metric, our approach outperforms the best competing models by 1.42%, 7.94%, and 7.73% on the SSEC, SZEC, and GEI indices, respectively. In addition, we design a trading strategy based on the proposed model. The economic results show that compared to the competing trading strategies, our strategy delivers a superior performance in terms of the accumulated return and Sharpe ratio.

18 MLLM Machine Unlearning via Visual Knowledge Distillation 2025-12-12
展开

Recently, machine unlearning approaches have been proposed to remove sensitive information from well-trained large models. However, most existing methods are tailored for LLMs, while MLLM-oriented unlearning remains at its early stage. Inspired by recent studies exploring the internal mechanisms of MLLMs, we propose to disentangle the visual and textual knowledge embedded within MLLMs and introduce a dedicated approach to selectively erase target visual knowledge while preserving textual knowledge. Unlike previous unlearning methods that rely on output-level supervision, our approach introduces a Visual Knowledge Distillation (VKD) scheme, which leverages intermediate visual representations within the MLLM as supervision signals. This design substantially enhances both unlearning effectiveness and model utility. Moreover, since our method only fine-tunes the visual components of the MLLM, it offers significant efficiency advantages. Extensive experiments demonstrate that our approach outperforms state-of-the-art unlearning methods in terms of both effectiveness and efficiency. Moreover, we are the first to evaluate the robustness of MLLM unlearning against relearning attacks.

19 Ontology-Based Knowledge Graph Framework for Industrial Standard Documents via Hierarchical and Propositional Structuring 2025-12-09
展开

Ontology-based knowledge graph (KG) construction is a core technology that enables multidimensional understanding and advanced reasoning over domain knowledge. Industrial standards, in particular, contain extensive technical information and complex rules presented in highly structured formats that combine tables, scopes of application, constraints, exceptions, and numerical calculations, making KG construction especially challenging. In this study, we propose a method that organizes such documents into a hierarchical semantic structure, decomposes sentences and tables into atomic propositions derived from conditional and numerical rules, and integrates them into an ontology-knowledge graph through LLM-based triple extraction. Our approach captures both the hierarchical and logical structures of documents, effectively representing domain-specific semantics that conventional methods fail to reflect. To verify its effectiveness, we constructed rule, table, and multi-hop QA datasets, as well as a toxic clause detection dataset, from industrial standards, and implemented an ontology-aware KG-RAG framework for comparative evaluation. Experimental results show that our method achieves significant performance improvements across all QA types compared to existing KG-RAG approaches. This study demonstrates that reliable and scalable knowledge representation is feasible even for industrial documents with intertwined conditions, constraints, and scopes, contributing to future domain-specific RAG development and intelligent document management.

20 Weakly Supervised Ephemeral Gully Detection In Remote Sensing Images Using Vision Language Models 2025-11-17
展开

Among soil erosion problems, Ephemeral Gullies are one of the most concerning phenomena occurring in agricultural fields. Their short temporal cycles increase the difficulty in automatically detecting them using classical computer vision approaches and remote sensing. Also, due to scarcity of and the difficulty in producing accurate labeled data, automatic detection of ephemeral gullies using Machine Learning is limited to zero-shot approaches which are hard to implement. To overcome these challenges, we present the first weakly supervised pipeline for detection of ephemeral gullies. Our method relies on remote sensing and uses Vision Language Models (VLMs) to drastically reduce the labor-intensive task of manual labeling. In order to achieve that, the method exploits: 1) the knowledge embedded in the VLM's pretraining; 2) a teacher-student model where the teacher learns from noisy labels coming from the VLMs, and the student learns by weak supervision using teacher-generate labels and a noise-aware loss function. We also make available the first-of-its-kind dataset for semi-supervised detection of ephemeral gully from remote-sensed images. The dataset consists of a number of locations labeled by a group of soil and plant scientists, as well as a large number of unlabeled locations. The dataset represent more than 18,000 high-resolution remote-sensing images obtained over the course of 13 years. Our experimental results demonstrate the validity of our approach by showing superior performances compared to VLMs and the label model itself when using weak supervision to train an student model. The code and dataset for this work are made publicly available.

21 D$^{2}$-VPR: A Parameter-efficient Visual-foundation-model-based Visual Place Recognition Method via Knowledge Distillation and Deformable Aggregation 2025-11-16
展开

Visual Place Recognition (VPR) aims to determine the geographic location of a query image by retrieving its most visually similar counterpart from a geo-tagged reference database. Recently, the emergence of the powerful visual foundation model, DINOv2, trained in a self-supervised manner on massive datasets, has significantly improved VPR performance. This improvement stems from DINOv2's exceptional feature generalization capabilities but is often accompanied by increased model complexity and computational overhead that impede deployment on resource-constrained devices. To address this challenge, we propose $D^{2}$-VPR, a $D$istillation- and $D$eformable-based framework that retains the strong feature extraction capabilities of visual foundation models while significantly reducing model parameters and achieving a more favorable performance-efficiency trade-off. Specifically, first, we employ a two-stage training strategy that integrates knowledge distillation and fine-tuning. Additionally, we introduce a Distillation Recovery Module (DRM) to better align the feature spaces between the teacher and student models, thereby minimizing knowledge transfer losses to the greatest extent possible. Second, we design a Top-Down-attention-based Deformable Aggregator (TDDA) that leverages global semantic features to dynamically and adaptively adjust the Regions of Interest (ROI) used for aggregation, thereby improving adaptability to irregular structures. Extensive experiments demonstrate that our method achieves competitive performance compared to state-of-the-art approaches. Meanwhile, it reduces the parameter count by approximately 64.2% (compared to CricaVPR).Code is available at https://github.com/tony19980810/D2VPR.

22 VADTree: Explainable Training-Free Video Anomaly Detection via Hierarchical Granularity-Aware Tree 2025-10-26
展开

Video anomaly detection (VAD) focuses on identifying anomalies in videos. Supervised methods demand substantial in-domain training data and fail to deliver clear explanations for anomalies. In contrast, training-free methods leverage the knowledge reserves and language interactivity of large pre-trained models to detect anomalies. However, the current fixed-length temporal window sampling approaches struggle to accurately capture anomalies with varying temporal spans. Therefore, we propose VADTree that utilizes a Hierarchical Granularityaware Tree (HGTree) structure for flexible sampling in VAD. VADTree leverages the knowledge embedded in a pre-trained Generic Event Boundary Detection (GEBD) model to characterize potential anomaly event boundaries. Specifically, VADTree decomposes the video into generic event nodes based on boundary confidence, and performs adaptive coarse-fine hierarchical structuring and redundancy removal to construct the HGTree. Then, the multi-dimensional priors are injected into the visual language models (VLMs) to enhance the node-wise anomaly perception, and anomaly reasoning for generic event nodes is achieved via large language models (LLMs). Finally, an inter-cluster node correlation method is used to integrate the multi-granularity anomaly scores. Extensive experiments on three challenging datasets demonstrate that VADTree achieves state-of-the-art performance in training-free settings while drastically reducing the number of sampled video segments. The code will be available at https://github.com/wenlongli10/VADTree.

23 Language-Instructed Reasoning for Group Activity Detection via Multimodal Large Language Model 2025-09-19
展开

Group activity detection (GAD) aims to simultaneously identify group members and categorize their collective activities within video sequences. Existing deep learning-based methods develop specialized architectures (e.g., transformer networks) to model the dynamics of individual roles and semantic dependencies between individuals and groups. However, they rely solely on implicit pattern recognition from visual features and struggle with contextual reasoning and explainability. In this work, we propose LIR-GAD, a novel framework of language-instructed reasoning for GAD via Multimodal Large Language Model (MLLM). Our approach expand the original vocabulary of MLLM by introducing an activity-level token and multiple cluster-specific tokens. We process video frames alongside two specially designed tokens and language instructions, which are then integrated into the MLLM. The pretrained commonsense knowledge embedded in the MLLM enables the token and tokens to effectively capture the semantic information of collective activities and learn distinct representational features of different groups, respectively. Also, we introduce a multi-label classification loss to further enhance the token's ability to learn discriminative semantic representations. Then, we design a Multimodal Dual-Alignment Fusion (MDAF) module that integrates MLLM's hidden embeddings corresponding to the designed tokens with visual features, significantly enhancing the performance of GAD. Both quantitative and qualitative experiments demonstrate the superior performance of our proposed method in GAD taks.

24 A Novel Compression Framework for YOLOv8: Achieving Real-Time Aerial Object Detection on Edge Devices via Structured Pruning and Channel-Wise Distillation 2025-09-16
展开

Efficient deployment of deep learning models for aerial object detection on resource-constrained devices requires significant compression without com-promising performance. In this study, we propose a novel three-stage compression pipeline for the YOLOv8 object detection model, integrating sparsity-aware training, structured channel pruning, and Channel-Wise Knowledge Distillation (CWD). First, sparsity-aware training introduces dynamic sparsity during model optimization, effectively balancing parameter reduction and detection accuracy. Second, we apply structured channel pruning by leveraging batch normalization scaling factors to eliminate redundant channels, significantly reducing model size and computational complexity. Finally, to mitigate the accuracy drop caused by pruning, we employ CWD to transfer knowledge from the original model, using an adjustable temperature and loss weighting scheme tailored for small and medium object detection. Extensive experiments on the VisDrone dataset demonstrate the effectiveness of our approach across multiple YOLOv8 variants. For YOLOv8m, our method reduces model parameters from 25.85M to 6.85M (a 73.51% reduction), FLOPs from 49.6G to 13.3G, and MACs from 101G to 34.5G, while reducing AP50 by only 2.7%. The resulting compressed model achieves 47.9 AP50 and boosts inference speed from 26 FPS (YOLOv8m baseline) to 45 FPS, enabling real-time deployment on edge devices. We further apply TensorRT as a lightweight optimization step. While this introduces a minor drop in AP50 (from 47.9 to 47.6), it significantly improves inference speed from 45 to 68 FPS, demonstrating the practicality of our approach for high-throughput, re-source-constrained scenarios.

25 BeDKD: Backdoor Defense based on Dynamic Knowledge Distillation and Directional Mapping Modulator 2025-08-03
展开

Although existing backdoor defenses have gained success in mitigating backdoor attacks, they still face substantial challenges. In particular, most of them rely on large amounts of clean data to weaken the backdoor mapping but generally struggle with residual trigger effects, resulting in persistently high attack success rates (ASR). Therefore, in this paper, we propose a novel Backdoor defense method based on Directional mapping module and adversarial Knowledge Distillation (BeDKD), which balances the trade-off between defense effectiveness and model performance using a small amount of clean and poisoned data. We first introduce a directional mapping module to identify poisoned data, which destroys clean mapping while keeping backdoor mapping on a small set of flipped clean data. Then, the adversarial knowledge distillation is designed to reinforce clean mapping and suppress backdoor mapping through a cycle iteration mechanism between trust and punish distillations using clean and identified poisoned data. We conduct experiments to mitigate mainstream attacks on three datasets, and experimental results demonstrate that BeDKD surpasses the state-of-the-art defenses and reduces the ASR by 98% without significantly reducing the CACC. Our code are available in https://github.com/CAU-ISS-Lab/Backdoor-Attack-Defense-LLMs/tree/main/BeDKD.

26 An Ecosystem for Ontology Interoperability 2025-07-16
展开

Ontology interoperability is one of the complicated issues that restricts the use of ontologies in knowledge graphs (KGs). Different ontologies with conflicting and overlapping concepts make it difficult to design, develop, and deploy an interoperable ontology for downstream tasks. We propose an ecosystem for ontology interoperability. The ecosystem employs three state-of-the-art semantic techniques in different phases of the ontology engineering life cycle: ontology design patterns (ODPs) in the design phase, ontology matching and versioning (OM&OV) in the develop phase, and data-driven ontology validation (DOVA) in the deploy phase, to achieve better ontology interoperability and data integration in real-world applications. A case study of sensor observation in the building domain validates the usefulness of the proposed ecosystem.

27 Deliberation on Priors: Trustworthy Reasoning of Large Language Models on Knowledge Graphs 2025-05-21
展开

Knowledge graph-based retrieval-augmented generation seeks to mitigate hallucinations in Large Language Models (LLMs) caused by insufficient or outdated knowledge. However, existing methods often fail to fully exploit the prior knowledge embedded in knowledge graphs (KGs), particularly their structural information and explicit or implicit constraints. The former can enhance the faithfulness of LLMs' reasoning, while the latter can improve the reliability of response generation. Motivated by these, we propose a trustworthy reasoning framework, termed Deliberation over Priors (DP), which sufficiently utilizes the priors contained in KGs. Specifically, DP adopts a progressive knowledge distillation strategy that integrates structural priors into LLMs through a combination of supervised fine-tuning and Kahneman-Tversky optimization, thereby improving the faithfulness of relation path generation. Furthermore, our framework employs a reasoning-introspection strategy, which guides LLMs to perform refined reasoning verification based on extracted constraint priors, ensuring the reliability of response generation. Extensive experiments on three benchmark datasets demonstrate that DP achieves new state-of-the-art performance, especially a Hit@1 improvement of 13% on the ComplexWebQuestions dataset, and generates highly trustworthy responses. We also conduct various analyses to verify its flexibility and practicality. The code is available at https://github.com/reml-group/Deliberation-on-Priors.

28 OntoGSN: An Ontology-Based Framework for Semantic Management and Extension of Assurance Cases 2025-05-20
展开

Assurance cases (ACs) are a common artifact for building and maintaining confidence in system properties such as safety or robustness. Constructing an AC can be challenging, although existing tools provide support in static, document-centric applications and methods for dynamic contexts (e.g., autonomous driving) are emerging. Unfortunately, managing ACs remains a challenge, since maintaining the embedded knowledge in the face of changes requires substantial effort, in the process deterring developers - or worse, producing poorly managed cases that instill false confidence. To address this, we present OntoGSN: an ontology and supporting middleware for managing ACs in the Goal Structuring Notation (GSN) standard. OntoGSN offers a knowledge representation and a queryable graph that can be automatically populated, evaluated, and updated. Our contributions include: a 1:1 formalization of the GSN Community Standard v3 in an OWL ontology with SWRL rules; a helper ontology and parser for integration with a widely used AC tool; a repository and documentation of design decisions for OntoGSN maintenance; a SPARQL query library with automation patterns; and a prototypical interface. The ontology strictly adheres to the standard's text and has been evaluated according to FAIR principles, the OOPS framework, competency questions, and community feedback. The development of other middleware elements is guided by the community needs and subject to ongoing evaluations. To demonstrate the utility of our contributions, we illustrate dynamic AC management in an example involving assurance of adversarial robustness in large language models.

29 Hypergraph Foundation Model 2025-03-03
展开

Hypergraph neural networks (HGNNs) effectively model complex high-order relationships in domains like protein interactions and social networks by connecting multiple vertices through hyperedges, enhancing modeling capabilities, and reducing information loss. Developing foundation models for hypergraphs is challenging due to their distinct data, which includes both vertex features and intricate structural information. We present Hyper-FM, a Hypergraph Foundation Model for multi-domain knowledge extraction, featuring Hierarchical High-Order Neighbor Guided Vertex Knowledge Embedding for vertex feature representation and Hierarchical Multi-Hypergraph Guided Structural Knowledge Extraction for structural information. Additionally, we curate 11 text-attributed hypergraph datasets to advance research between HGNNs and LLMs. Experiments on these datasets show that Hyper-FM outperforms baseline methods by approximately 13.4%, validating our approach. Furthermore, we propose the first scaling law for hypergraph foundation models, demonstrating that increasing domain diversity significantly enhances performance, unlike merely augmenting vertex and hyperedge counts. This underscores the critical role of domain diversity in scaling hypergraph models.

30 Knowledge-Driven Federated Graph Learning on Model Heterogeneity 2025-01-22
展开

Federated graph learning (FGL) has emerged as a promising paradigm for collaborative graph representation learning, enabling multiple parties to jointly train models while preserving data privacy. However, most existing approaches assume homogeneous client models and largely overlook the challenge of model-centric heterogeneous FGL (MHtFGL), which frequently arises in practice when organizations employ graph neural networks (GNNs) of different scales and architectures.Such architectural diversity not only undermines smooth server-side aggregation, which presupposes a unified representation space shared across clients' updates, but also further complicates the transfer and integration of structural knowledge across clients. To address this issue, we propose the Federated Graph Knowledge Collaboration (FedGKC) framework. FedGKC introduces a lightweight Copilot Model on each client to facilitate knowledge exchange while local architectures are heterogeneous across clients, and employs two complementary mechanisms: Client-side Self-Mutual Knowledge Distillation, which transfers effective knowledge between local and copilot models through bidirectional distillation with multi-view perturbation; and Server-side Knowledge-Aware Model Aggregation, which dynamically assigns aggregation weights based on knowledge provided by clients. Extensive experiments on eight benchmark datasets demonstrate that FedGKC achieves an average accuracy gain of 3.88% over baselines in MHtFGL scenarios, while maintaining excellent performance in homogeneous settings.

31 Trust-free Personalized Decentralized Learning 2024-10-15
展开

Personalized collaborative learning in federated settings faces a critical trade-off between customization and participant trust. Existing approaches typically rely on centralized coordinators or trusted peer groups, limiting their applicability in open, trust-averse environments. While recent decentralized methods explore anonymous knowledge sharing, they often lack global scalability and robust mechanisms against malicious peers. To bridge this gap, we propose TPFed, a \textit{Trust-free Personalized Decentralized Federated Learning} framework. TPFed replaces central aggregators with a blockchain-based bulletin board, enabling participants to dynamically select global communication partners based on Locality-Sensitive Hashing (LSH) and peer ranking. Crucially, we introduce an ``all-in-one'' knowledge distillation protocol that simultaneously handles knowledge transfer, model quality evaluation, and similarity verification via a public reference dataset. This design ensures secure, globally personalized collaboration without exposing local models or data. Extensive experiments demonstrate that TPFed significantly outperforms traditional federated baselines in both learning accuracy and system robustness against adversarial attacks.

32 Transfer learning of state-based potential games for process optimization in decentralized manufacturing systems 2024-08-12
展开

This paper presents a novel online transfer learning approach in state-based potential games (TL-SbPGs) for distributed self-optimization in manufacturing systems. The approach targets practical industrial scenarios where knowledge sharing among similar players enhances learning in large-scale and decentralized environments. TL-SbPGs enable players to reuse learned policies from others, which improves learning outcomes and accelerates convergence. To accomplish this goal, we develop transfer learning concepts and similarity criteria for players, which offer two distinct settings: (a) predefined similarities between players and (b) dynamically inferred similarities between players during training. The applicability of the SbPG framework to transfer learning is formally established. Furthermore, we present a method to optimize the timing and weighting of knowledge transfer. Experimental results from a laboratory-scale testbed show that TL-SbPGs improve production efficiency and reduce power consumption compared to vanilla SbPGs.

33 A Survey on Generative Modeling with Limited Data, Few Shots, and Zero Shot 2023-07-26
展开

Generative modeling in machine learning aims to synthesize new data samples that are statistically similar to those observed during training. While conventional generative models such as GANs and diffusion models typically assume access to large and diverse datasets, many real-world applications (e.g. in medicine, satellite imaging, and artistic domains) operate under limited data availability and strict constraints. In this survey, we examine Generative Modeling under Data Constraint (GM-DC), which includes limited-data, few-shot, and zero-shot settings. We present a unified perspective on the key challenges in GM-DC, including overfitting, frequency bias, and incompatible knowledge transfer, and discuss how these issues impact model performance. To systematically analyze this growing field, we introduce two novel taxonomies: one categorizing GM-DC tasks (e.g. unconditional vs. conditional generation, cross-domain adaptation, and subject-driven modeling), and another organizing methodological approaches (e.g. transfer learning, data augmentation, meta-learning, and frequency-aware modeling). Our study reviews over 230 papers, offering a comprehensive view across generative model types and constraint scenarios. We further analyze task-approach-method interactions using a Sankey diagram and highlight promising directions for future work, including adaptation of foundation models, holistic evaluation frameworks, and data-centric strategies for sample selection. This survey provides a timely and practical roadmap for researchers and practitioners aiming to advance generative modeling under limited data. Project website: https://sutd-visual-computing-group.github.io/gmdc-survey/.

8. combinatorial game theory/xiangqi/chinese chess

序号 标题 日期 摘要
1 Variants of Wythoff game with terminal positions or blocking maneuvers 2025-12-12
展开

We show how the software Walnut can be used to obtain concise proofs of results concerning variants of the famous Wythoff game, in which blocking maneuvers or terminal positions are added, as discussed respectively by Larsson (2011) and Komak et al. (2025). Our approach provides automatic proofs that both confirm and extend their results, and the same techniques apply to newly introduced variants as well. Then, using classic techniques, we obtain new recursive and morphic characterizations of Wythoff-type games where the set of terminal positions $(x,y)$ satisfy $x+y\le\ell$. The use of Walnut in combinatorial game theory is relatively recent, and only a few examples have been explored so far. The Wythoff game, being directly connected to the Fibonacci numeration system, proves especially well-suited to this kind of approach. It permits us to solve instances for a fixed value of a parameter.

2 Impartial Games with Activeness 2025-11-26
展开

A combinatorial game is a two-player game without hidden information or chance elements. The main object of combinatorial game theory is to obtain the outcome, which player has a winning strategy, of a given combinatorial game. Positions of many well-known combinatorial games are naturally decomposed into a disjunctive sum of multiple components and can be analyzed independently for each component. Therefore, the study of disjunctive sums is a major topic in combinatorial game theory. Combinatorial games in which both players have the same set of possible moves for every position are called impartial games. In the normal-play convention, it is known that the outcome of a disjunctive sum of impartial games can be obtained by computing the Grundy number of each term. The theory of impartial games is generalized in various forms. This paper proposes another generalization of impartial games to a new framework, impartial games with activeness: each game is assigned a status of either active'' or inactive''; the status may change by moves; a disjunctive sum of games ends immediately, not only when no further moves can be made, but also when all terms become inactive. We formally introduce impartial games with activeness and investigate their fundamental properties.

3 $\mathcal{L}\mathcal{R}$-Ending partisan rulesets 2025-11-18
展开

In this paper, we consider $\mathcal{L}\mathcal{R}$-ending partisan rulesets as a branch of combinatorial game theory. In these rulesets, the sets of options of both players are the same. However, there are two kinds of terminal positions. If the game ends in one of the terminal positions, then a player wins and if the game ends in the other terminal position, the other player wins. We introduce notations for positions in $\mathcal{L}\mathcal{R}$-ending partisan rulesets and show their algebraic structures. We also introduce some examples of $\mathcal{L}\mathcal{R}$-partisan rulesets and show how our results can be used for analyzing the rulesets.

4 Various Diamond Properties in Combinatorial Game Theory 2025-09-26
展开

We investigate conditions under which positions in combinatorial games admit simple values. We introduce a unified diamond framework, the $\Diamond_A$-property ($A\in{\mathbb{Z},\mathbb{D}$), for sets of positions closed under options. Under certain conditions, this framework guarantees that all values are integers, dyadic rationals, or pairs ${m

5 Xiangqi-R1: Enhancing Spatial Strategic Reasoning in LLMs for Chinese Chess via Reinforcement Learning 2025-07-16
展开

Game playing has long served as a fundamental benchmark for evaluating Artificial General Intelligence. While Large Language Models (LLMs) have demonstrated impressive capabilities in general reasoning, their effectiveness in spatial strategic reasoning, which is critical for complex and fully observable board games, remains insufficiently explored. In this work, we adopt Chinese Chess (Xiangqi) as a challenging and rich testbed due to its intricate rules and spatial complexity. To advance LLMs' strategic competence in such environments, we propose a training framework tailored to Xiangqi, built upon a large-scale dataset of five million board-move pairs enhanced with expert annotations and engine evaluations. Building on this foundation, we introduce Xiangqi-R1, a 7B-parameter model trained in multi-stage manner. Our Experimental results indicate that, despite their size and power, general-purpose LLMs struggle to achieve satisfactory performance in these tasks. Compared to general-purpose LLMs, Xiangqi-R1 greatly advances with an 18% rise in move legality and a 22% boost in analysis accuracy. Our results point to a promising path for creating general strategic intelligence in complex areas.

6 On 3-terminal positions in Hex 2025-07-11
展开

This paper is about 3-terminal regions in Hex. A 3-terminal region is a region of the Hex board that is completely surrounded by black and white stones, in such a way that the black boundary stones form 3 connected components. We characterize Hex as the universal planar Shannon game of degree 3. This ensures that every Hex position can be decomposed into 3-terminal regions. We then investigate the combinatorial game theory of 3-terminal regions. We show that there are infinitely many distinct Hex-realizable values for such regions. We introduce an infinite family of 3-terminal positions called superswitches and investigate their properties. We also present a database of Hex-realizable 3-terminal values, and illustrate its utility as a problem-solving tool by giving various applications. The applications include the automated verification of connects-both templates and pivoting templates, a new handicap strategy for $11\times 11$ Hex, and a method for constructing witnesses for the non-inferiority of probes in many Hex templates. These methods allow us to disprove a conjecture by Henderson and Hayward.

7 A number game reconciliation 2025-07-07
展开

Number games play a central role in alternating normal play combinatorial game theory due to their real-number-like properties (Conway 1976). Here we undertake a critical re-examination: we begin with integer and dyadic games and identify subtle inconsistencies and oversights in the established literature (e.g. Siegel 2013), most notably, the lack of distinction between a game being a number and a game being equal to a number. After addressing this, we move to the general theory of number games. We analyze Conway's original definition and a later refinement by Siegel, and highlight conceptual gaps that have largely gone unnoticed. Through a careful dissection of these issues, we propose a more coherent and robust formulation. Specifically, we develop a refined characterization of numbers, via several subclasses, dyadics, canonical forms, their group theoretic closure and zugzwangs, that altogether better capture the essence of number games. This reconciliation not only clarifies existing ambiguities but also uncovers several open problems.

8 Deep Reinforcement Learning Xiangqi Player with Monte Carlo Tree Search 2025-06-18
展开

This paper presents a Deep Reinforcement Learning (DRL) system for Xiangqi (Chinese Chess) that integrates neural networks with Monte Carlo Tree Search (MCTS) to enable strategic self-play and self-improvement. Addressing the underexplored complexity of Xiangqi, including its unique board layout, piece movement constraints, and victory conditions, our approach combines policy-value networks with MCTS to simulate move consequences and refine decision-making. By overcoming challenges such as Xiangqi's high branching factor and asymmetrical piece dynamics, our work advances AI capabilities in culturally significant strategy games while providing insights for adapting DRL-MCTS frameworks to domain-specific rule systems.

9 Circular Game Coloring of Signed Graphs 2025-05-27
展开

We extend the theory of circular game chromatic numbers to signed graphs by defining the invariant $χ_c^g(G,σ)$ for signed graphs $(G,σ)$. Our analysis establishes tight bounds dependent on the structural properties of the underlying graph $G$ and its signature $σ$. Building on the foundational framework of Lin and Zhu \cite{LinZhu2009}, we demonstrate that the circular game chromatic number of a balanced signed graph $(G, σ)$ equals that of its underlying graph $G$, i.e., $χ_c^g(G,σ) = χ_c^g(G)$. For antibalanced signed graphs, we prove that $χ_c^g(G,σ)$ does not exceed the chromatic number of $G$ plus one, with tightness demonstrated for odd cycles. A dichotomy emerges for bipartite graphs: $χ_c^g(G,σ)$ equals $2$ when the graph is balanced, and otherwise remains bounded above by $3$. These results rely on switching equivalence principles (Lemma \ref{lem:Zaslavsky}) and critical properties of fundamental cycles (Lemma \ref{lem:ForcingTree}), adapting classical techniques from unsigned graph theory to the signed context. We further highlight open questions regarding computational complexity and planar graph extensions, creating new bridges between combinatorial game theory and signed graph structural analysis.

10 Computational and Algebraic Structure of Board Games 2025-02-18
展开

We provide two methodologies in the area of computation theory to solve optimal strategies for board games such as Xi Gua Qi and Go. From experimental results, we find relevance to graph theory, matrix representation, and mathematical consciousness. We prove that the decision strategy of movement for Xi Gua Qi and Chinese checker games belongs to a subset that is neither a ring nor a group over set Y={-1,0,1}. Additionally, the movement for any board game with two players belongs to a subset that is neither a ring nor a group from the razor of Occam. We derive the closed form of the transition matrix for any board game with two players such as chess and Chinese chess. We discover that the element of the transition matrix belongs to a rational number. We propose a different methodology based on algebra theory to analyze the complexity of board games in their entirety, instead of being limited solely to endgame results. It is probable that similar decision processes of people may also belong to a matrix representation that is neither a ring nor a group.

11 RemoteChess: Enhancing Older Adults' Social Connectedness via Designing a Virtual Reality Chinese Chess (Xiangqi) Community 2025-02-17
展开

The decline of social connectedness caused by distance and physical limitations severely affects older adults' well-being and mental health. While virtual reality (VR) is promising for older adults to socialize remotely, existing social VR designs primarily focus on verbal communication (e.g., reminiscent, chat). Actively engaging in shared activities is also an important aspect of social connection. We designed RemoteChess, which constructs a social community and a culturally relevant activity (i.e., Chinese chess) for older adults to play while engaging in social interaction. We conducted a user study with groups of older adults interacting with each other through RemoteChess. Our findings indicate that RemoteChess enhanced participants' social connectedness by offering familiar environments, culturally relevant social catalysts, and asymmetric interactions. We further discussed design guidelines for designing culturally relevant social activities in VR to promote social connectedness for older adults.

12 Complete Implementation of WXF Chinese Chess Rules 2024-12-23
展开

Unlike repetitions in Western Chess where all repetitions are draws, repetitions in Chinese Chess could result in a win, draw, or loss depending on the kind of repetition being made by both players. One of the biggest hurdles facing Chinese Chess application development is a proper system for judging games correctly. This paper introduces a complete algorithm for ruling the WXF rules correctly in all 110 example cases found in the WXF manual. We introduce several novel optimizations for speeding up the repetition handling without compromising the program correctness. This algorithm is usable in engines, and we saw a total increase in playing strength by +10 point rating increase, or an increased 5% winrate when integrating this approach into our prototype engine.

13 Mastering Chinese Chess AI (Xiangqi) Without Search 2024-10-07
展开

We have developed a high-performance Chinese Chess AI that operates without reliance on search algorithms. This AI has demonstrated the capability to compete at a level commensurate with the top 0.1% of human players. By eliminating the search process typically associated with such systems, this AI achieves a Queries Per Second (QPS) rate that exceeds those of systems based on the Monte Carlo Tree Search (MCTS) algorithm by over a thousandfold and surpasses those based on the AlphaBeta pruning algorithm by more than a hundredfold. The AI training system consists of two parts: supervised learning and reinforcement learning. Supervised learning provides an initial human-like Chinese chess AI, while reinforcement learning, based on supervised learning, elevates the strength of the entire AI to a new level. Based on this training system, we carried out enough ablation experiments and discovered that 1. The same parameter amount of Transformer architecture has a higher performance than CNN on Chinese chess; 2. Possible moves of both sides as features can greatly improve the training process; 3. Selective opponent pool, compared to pure self-play training, results in a faster improvement curve and a higher strength limit. 4. Value Estimation with Cutoff(VECT) improves the original PPO algorithm training process and we will give the explanation.

14 XQSV: A Structurally Variable Network to Imitate Human Play in Xiangqi 2024-07-05
展开

In this paper, we introduce an innovative deep learning architecture, termed Xiangqi Structurally Variable (XQSV), designed to emulate the behavioral patterns of human players in Xiangqi, or Chinese Chess. The unique attribute of XQSV is its capacity to alter its structural configuration dynamically, optimizing performance for the task based on the particular subset of data on which it is trained. We have incorporated several design improvements to significantly enhance the network's predictive accuracy, including a local illegal move filter, an Elo range partitioning, a sequential one-dimensional input, and a simulation of imperfect memory capacity. Empirical evaluations reveal that XQSV attains a predictive accuracy of approximately 40%, with its performance peaking within the trained Elo range. This indicates the model's success in mimicking the play behavior of individuals within that specific range. A three-terminal Turing Test was employed to demonstrate that the XQSV model imitates human behavior more accurately than conventional Xiangqi engines, rendering it indistinguishable from actual human opponents. Given the inherent nondeterminism in human gameplay, we propose two supplementary relaxed evaluation metrics. To our knowledge, XQSV represents the first model to mimic Xiangqi players.

15 Shogi and Frieze group 2023-11-15
展开

Shogi is a traditional Japanese strategy board game in the same family as chess, chaturanga, and xiangqi, and has been theoretically studied from various aspects. The research on recommended sequences of moves in each opening of shogi is called joseki; how to use a rook (Static Rook and Ranging Rook), or how to develop a castle, etc. Also, many pieces of tsume shogi, artistic shogi miniature problems, in which the opponent's king is checkmated by a series of checks, have been created involving various beautiful techniques such as "saw" and "puzzle ring". In addition, the rapid development of AI in recent years has led to the pursuit of the best possible moves in shogi. In this paper, we move away from the study of winning and losing in shogi and focus on the mathematical aspects of the movement of shogi pieces. We propose to correspond movements of shogi pieces to a set of geometrical patterns constructed by the shape of shogi pieces and representing the Frieze group through the condition regarding the neighborhood of arrangements of given shogi pieces. Although the discovery of this correspondence does not lead to a winning strategy for shogi, however, it does demonstrate a curious involvement between the traditional Japanese board game and Western mathematics.

16 JiangJun: Mastering Xiangqi by Tackling Non-Transitivity in Two-Player Zero-Sum Games 2023-08-09
展开

This paper presents an empirical exploration of non-transitivity in perfect-information games, specifically focusing on Xiangqi, a traditional Chinese board game comparable in game-tree complexity to chess and shogi. By analyzing over 10,000 records of human Xiangqi play, we highlight the existence of both transitive and non-transitive elements within the game's strategic structure. To address non-transitivity, we introduce the JiangJun algorithm, an innovative combination of Monte-Carlo Tree Search (MCTS) and Policy Space Response Oracles (PSRO) designed to approximate a Nash equilibrium. We evaluate the algorithm empirically using a WeChat mini program and achieve a Master level with a 99.41% win rate against human players. The algorithm's effectiveness in overcoming non-transitivity is confirmed by a plethora of metrics, such as relative population performance and visualization results. Our project site is available at \url{https://sites.google.com/view/jiangjun-site/}.

17 Niel's Chess -- Rules for Xiangqi 2023-06-27
展开

In this paper, the rules of Niel's Chess are adapted to the game of Xiangqi, following the idea that the River and the Palaces play an important role in restricting and enabling chess pieces in their movements.

18 On the complexity of Dark Chinese Chess 2021-12-06
展开

This paper provides a complexity analysis for the game of dark Chinese chess (a.k.a. "JieQi"), a variation of Chinese chess. Dark Chinese chess combines some of the most complicated aspects of board and card games, such as long-term strategy or planning, large state space, stochastic, and imperfect-information, which make it closer to the real world decision-making problem and pose great challenges to game AI. Here we design a self-play program to calculate the game tree complexity and average information set size of the game, and propose an algorithm to calculate the number of information sets.

19 Cumulative Games: Who is the current player? 2020-05-13
展开

Combinatorial Game Theory(CGT)is a branch of Game Theory that has developed largely independently of Economic Game Theory (EGT), and is concerned with deep mathematical properties of two-player zero-sum games recursively defined over various combinatorial structures. The aim of this work is to lay the foundations for bridging the conceptual and technical gaps between CGT and EGT, here interpreted as multiplayer Extensive Form Games, so that they can be treated within a unified framework. More specifically, we introduce a class of $n$-player, general-sum games, called {\sc Cumulative Games}, which can be analyzed using tools from both CGT and EGT. We show how two of the most fundamental definitions of CGT, the outcome function and the disjunctive sum operator, naturally extend to the class of {\sc Cumulative Games}. The outcome function allows for efficient equilibrium computation under certain restrictions, while the disjunctive sum operator lets us define a partial order over games according to the advantage that a given player has. Finally, we show that any Extensive Form Game can be written as a {\sc Cumulative Game}.

9. code llm

序号 标题 日期 摘要
1 Neuron-Guided Interpretation of Code LLMs: Where, Why, and How? 2025-12-23
展开

Code language models excel on code intelligence tasks, yet their internal interpretability is underexplored. Existing neuron interpretability techniques from NLP are suboptimal for source code due to programming languages formal, hierarchical, and executable nature. We empirically investigate code LLMs at the neuron level, localizing language-specific neurons (selectively responsive to one language) and concept layers (feed-forward layers encoding language-agnostic code representations). We analyze Llama-3.1-8B and Qwen2.5-Coder-32B on multilingual inputs in C++, Java, Python, Go, and JavaScript, measuring neuron selectivity and layerwise contributions during generation. We find (1) neurons specialized for individual languages alongside a universal subset supporting general-purpose generation; and (2) lower layers mainly encode language-specific syntax, while middle layers capture semantic abstractions shared across languages, emerging as concept layers. We demonstrate utility on three tasks: neuron-guided fine-tuning for code generation, clone detection via concept-layer embeddings, and concept-layer-guided transfer for code summarization, each yielding consistent gains in multilingual settings.

2 Beyond Language Boundaries: Uncovering Programming Language Families for Code Language Models 2025-12-22
展开

The rapid proliferation of diverse programming languages presents both opportunities and challenges for developing multilingual code LLMs. While existing techniques often train code LLMs by simply aggregating multilingual code data, few explore the deeper relationships between programming languages(PLs) and how such relationships can be utilized to optimize the training and inference of code LLMs. In this work, we investigate 2 fundamental questions: 1) What are the deep linguistic relationships among PLs? and 2) How can these relationships be leveraged to improve multilingual code LLMs? We propose an embedding-based framework to uncover the latent families of PLs. Our approach begins by defining 21 primary linguistic features of programming languages, such as variable definition, control structures, and method declarations, and then employs LLMs to generate feature-aligned code samples across multiple languages. By embedding these semantically parallel code snippets from 19 languages, we construct a similarity matrix and perform hierarchical clustering to uncover inherent language relationships. Our analysis reveals clear hierarchical structures among programming languages. Closely related languages form well-defined clusters (e.g., C, C++, Java, and Swift group together), while Go exhibits as a central language with the highest cross-language similarity. Building on the uncovered language families, we propose three strategies to enhance multilingual LLM training: transfer learning across linguistically related languages, linguistic proximity-guided curriculum learning, and centroid-based intermediary code translation. Experiments on 4 code intelligence tasks demonstrate that our methods significantly improve multilingual LLM performance. This work offers a universal perspective on programming languages and advances more effective strategies for multilingual code LLM training.

3 CodeSimpleQA: Scaling Factuality in Code Large Language Models 2025-12-22
展开

Large language models (LLMs) have made significant strides in code generation, achieving impressive capabilities in synthesizing code snippets from natural language instructions. However, a critical challenge remains in ensuring LLMs generate factually accurate responses about programming concepts, technical implementations, etc. Most previous code-related benchmarks focus on code execution correctness, overlooking the factual accuracy of programming knowledge. To address this gap, we present CodeSimpleQA, a comprehensive bilingual benchmark designed to evaluate the factual accuracy of code LLMs in answering code-related questions, which contains carefully curated question-answer pairs in both English and Chinese, covering diverse programming languages and major computer science domains. Further, we create CodeSimpleQA-Instruct, a large-scale instruction corpus with 66M samples, and develop a post-training framework combining supervised fine-tuning and reinforcement learning. Our comprehensive evaluation of diverse LLMs reveals that even frontier LLMs struggle with code factuality. Our proposed framework demonstrates substantial improvements over the base model, underscoring the critical importance of factuality-aware alignment in developing reliable code LLMs.

4 UCoder: Unsupervised Code Generation by Internal Probing of Large Language Models 2025-12-19
展开

Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, their effectiveness heavily relies on supervised training with extensive labeled (e.g., question-answering pairs) or unlabeled datasets (e.g., code snippets), which are often expensive and difficult to obtain at scale. To address this limitation, this paper introduces a method IPC, an unsupervised framework that leverages Internal Probing of LLMs for Code generation without any external corpus, even unlabeled code snippets. We introduce the problem space probing, test understanding probing, solution space probing, and knowledge consolidation and reinforcement to probe the internal knowledge and confidence patterns existing in LLMs. Further, IPC identifies reliable code candidates through self-consistency mechanisms and representation-based quality estimation to train UCoder (coder with unsupervised learning). We validate the proposed approach across multiple code benchmarks, demonstrating that unsupervised methods can achieve competitive performance compared to supervised approaches while significantly reducing the dependency on labeled data and computational resources. Analytic experiments reveal that internal model states contain rich signals about code quality and correctness, and that properly harnessing these signals enables effective unsupervised learning for code generation tasks, opening new directions for training code LLMs in resource-constrained scenarios.

5 Scaling Laws for Code: Every Programming Language Matters 2025-12-15
展开

Code large language models (Code LLMs) are powerful but costly to train, with scaling laws predicting performance from model size, data, and compute. However, different programming languages (PLs) have varying impacts during pre-training that significantly affect base model performance, leading to inaccurate performance prediction. Besides, existing works focus on language-agnostic settings, neglecting the inherently multilingual nature of modern software development. Therefore, it is first necessary to investigate the scaling laws of different PLs, and then consider their mutual influences to arrive at the final multilingual scaling law. In this paper, we present the first systematic exploration of scaling laws for multilingual code pre-training, conducting over 1000+ experiments (Equivalent to 336,000+ H800 hours) across multiple PLs, model sizes (0.2B to 14B parameters), and dataset sizes (1T tokens). We establish comprehensive scaling laws for code LLMs across multiple PLs, revealing that interpreted languages (e.g., Python) benefit more from increased model size and data than compiled languages (e.g., Rust). The study demonstrates that multilingual pre-training provides synergistic benefits, particularly between syntactically similar PLs. Further, the pre-training strategy of the parallel pairing (concatenating code snippets with their translations) significantly enhances cross-lingual abilities with favorable scaling properties. Finally, a proportion-dependent multilingual scaling law is proposed to optimally allocate training tokens by prioritizing high-utility PLs (e.g., Python), balancing high-synergy pairs (e.g., JavaScript-TypeScript), and reducing allocation to fast-saturating languages (Rust), achieving superior average performance across all PLs compared to uniform distribution under the same compute budget.

6 A Survey of Vibe Coding with Large Language Models 2025-10-14
展开

The advancement of large language models (LLMs) has catalyzed a paradigm shift from code generation assistance to autonomous coding agents, enabling a novel development methodology termed "Vibe Coding" where developers validate AI-generated implementations through outcome observation rather than line-by-line code comprehension. Despite its transformative potential, the effectiveness of this emergent paradigm remains under-explored, with empirical evidence revealing unexpected productivity losses and fundamental challenges in human-AI collaboration. To address this gap, this survey provides the first comprehensive and systematic review of Vibe Coding with large language models, establishing both theoretical foundations and practical frameworks for this transformative development approach. Drawing from systematic analysis of over 1000 research papers, we survey the entire vibe coding ecosystem, examining critical infrastructure components including LLMs for coding, LLM-based coding agent, development environment of coding agent, and feedback mechanisms. We first introduce Vibe Coding as a formal discipline by formalizing it through a Constrained Markov Decision Process that captures the dynamic triadic relationship among human developers, software projects, and coding agents. Building upon this theoretical foundation, we then synthesize existing practices into five distinct development models: Unconstrained Automation, Iterative Conversational Collaboration, Planning-Driven, Test-Driven, and Context-Enhanced Models, thus providing the first comprehensive taxonomy in this domain. Critically, our analysis reveals that successful Vibe Coding depends not merely on agent capabilities but on systematic context engineering, well-established development environments, and human-agent collaborative development models.

7 CREME: Robustness Enhancement of Code LLMs via Layer-Aware Model Editing 2025-07-22
展开

Large language models (LLMs) have demonstrated impressive capabilities in code generation, where the natural language prompt plays a crucial role in conveying user intent to the model. However, prior studies have shown that LLMs are highly sensitive to prompt perturbations. Minor modifications in wording, syntax, or formatting can significantly reduce the functional correctness of generated code. As perturbations frequently occur in real-world scenarios, improving the robustness of LLMs to prompt perturbations is essential for ensuring reliable performance in practical code generation. In this paper, we introduce CREME (Code Robustness Enhancement via Model Editing), a novel approach that enhances LLM robustness through targeted parameter updates. CREME first identifies robustness-sensitive layers by comparing hidden states between an original prompt and its perturbed variant. Then, it performs lightweight parameter editing at the identified layer to reduce performance degradation. We evaluate CREME on two widely used code generation benchmarks (HumanEval and MBPP) along with their perturbed counterparts. Experimental results show that CREME improves Pass@1 accuracy by 63% on perturbed prompts while maintaining stable performance on clean inputs, with accuracy deviations within 1%. Further analysis reveals that robustness-sensitive layers are primarily concentrated in the middle and deeper layers of the network, and their locations vary across different model architectures. These insights provide a valuable foundation for developing future robustness-oriented editing strategies.

8 CodeTF: One-stop Transformer Library for State-of-the-art Code LLMs 2023-05-31
展开

Code intelligence plays a key role in transforming modern software engineering. Recently, deep learning-based models, especially Transformer-based large language models (LLMs), have demonstrated remarkable potential in tackling these tasks by leveraging massive open-source code data and programming language features. However, the development and deployment of such models often require expertise in both machine learning and software engineering, creating a barrier for the model adoption. In this paper, we present CodeTF, an open-source Transformer-based library for state-of-the-art Code LLMs and code intelligence. Following the principles of modular design and extensible framework, we design CodeTF with a unified interface to enable rapid access and development across different types of models, datasets and tasks. Our library supports a collection of pretrained Code LLM models and popular code benchmarks, including a standardized interface to train and serve code LLMs efficiently, and data features such as language-specific parsers and utility functions for extracting code attributes. In this paper, we describe the design principles, the architecture, key modules and components, and compare with other related library tools. Finally, we hope CodeTF is able to bridge the gap between machine learning/generative AI and software engineering, providing a comprehensive open-source solution for developers, researchers, and practitioners.

10. speech recognition

序号 标题 日期 摘要
1 SLM-TTA: A Framework for Test-Time Adaptation of Generative Spoken Language Models 2025-12-31
展开

Spoken Language Models (SLMs) are increasingly central to modern speech-driven applications, but performance degrades under acoustic shift - real-world noise, reverberation, and microphone variation. Prior solutions rely on offline domain adaptation, which is post-hoc, data-intensive, and slow. We introduce the first test-time adaptation (TTA) framework for generative SLMs that process interleaved audio-text prompts. Our method updates a small, targeted subset of parameters during inference using only the incoming utterance, requiring no source data or labels. This stabilizes token distributions and improves robustness to acoustic variability without degrading core task accuracy. Evaluated on automatic speech recognition, speech translation, and 19 audio understanding tasks from AIR-Bench, our approach yields consistent gains under diverse corruptions. Because adaptation touches only a small fraction of weights, it is both compute- and memory-efficient, supporting deployment on resource-constrained platforms. This work enhances the robustness and adaptability of generative SLMs for real-world speech-driven applications.

2 PROFASR-BENCH: A Benchmark for Context-Conditioned ASR in High-Stakes Professional Speech 2025-12-29
展开

Automatic Speech Recognition (ASR) in professional settings faces challenges that existing benchmarks underplay: dense domain terminology, formal register variation, and near-zero tolerance for critical entity errors. We present ProfASR-Bench, a professional-talk evaluation suite for high-stakes applications across finance, medicine, legal, and technology. Each example pairs a natural-language prompt (domain cue and/or speaker profile) with an entity-rich target utterance, enabling controlled measurement of context-conditioned recognition. The corpus supports conventional ASR metrics alongside entity-aware scores and slice-wise reporting by accent and gender. Using representative families Whisper (encoder-decoder ASR) and Qwen-Omni (audio language models) under matched no-context, profile, domain+profile, oracle, and adversarial conditions, we find a consistent pattern: lightweight textual context produces little to no change in average word error rate (WER), even with oracle prompts, and adversarial prompts do not reliably degrade performance. We term this the context-utilization gap (CUG): current systems are nominally promptable yet underuse readily available side information. ProfASR-Bench provides a standardized context ladder, entity- and slice-aware reporting with confidence intervals, and a reproducible testbed for comparing fusion strategies across model families. Dataset: https://huggingface.co/datasets/prdeepakbabu/ProfASR-Bench Code: https://github.com/prdeepakbabu/ProfASR-Bench

3 Contextual Biasing for LLM-Based ASR with Hotword Retrieval and Reinforcement Learning 2025-12-26
展开

Large language model (LLM)-based automatic speech recognition (ASR) has recently achieved strong performance across diverse tasks, yet contextual biasing for named entities and hotwords under large vocabularies remains challenging. In this work, we propose a scalable two-stage framework that integrates hotword retrieval with LLM-ASR adaptation. First, we extend the Global-Local Contrastive Language-Audio pre-trained model (GLCLAP) to retrieve a compact top-k set of hotword candidates from a large vocabulary via robustness-aware data augmentation and fuzzy matching. Second, we inject the retrieved candidates as textual prompts into an LLM-ASR model and fine-tune it with Generative Rejection-Based Policy Optimization (GRPO), using a task-driven reward that jointly optimizes hotword recognition and overall transcription accuracy. Experiments on hotword-focused test sets show substantial keyword error rate (KER) reductions while maintaining sentence accuracy on general ASR benchmarks, demonstrating the effectiveness of the proposed framework for large-vocabulary contextual biasing.

4 Broadband tunable microwave photonic radar for simultaneous detection of human respiration, heartbeat, and speech with deep learning-based speech recognition 2025-12-25
展开

Multimodal vital sign monitoring and speech detection hold significant importance in medical health, public safety, and other fields. This study proposes a broadband tunable microwave photonic radar system that can simultaneously monitor respiration, heartbeat, and speech. The system works by generating broadband radar signals to detect subtle skin displacements caused by these physiological activities. It then utilizes phase variations in radar echo signals to extract and reconstruct the corresponding physiological signals. In order to enhance the processing capability for speech signals, a convolutional neural network with a dual-channel feature fusion model is incorporated, enabling high-precision speech recognition. In addition, the system's frequency-tunable characteristic allows it to flexibly switch frequency bands to adapt to different working environments, greatly improving its practicality and environmental adaptability. In concept-verification experiments, speech signals were reconstructed and recognized in the Ku, K, and Ka bands, achieving recognition accuracies of 97.20%, 98.07%, and 97.43%, respectively. The system's capability to detect multimodal vital signs was also thoroughly validated using a respiratory and heartbeat simulator. During a 20-second monitoring period, while accurately reconstructing speech, the maximum average error counts for respiratory and heartbeat monitoring were 0.39 and 0.87, respectively, proving its reliability and effectiveness in multimodal vital sign monitoring.

5 VALLR-Pin: Uncertainty-Factorized Visual Speech Recognition for Mandarin with Pinyin Guidance 2025-12-23
展开

Visual speech recognition (VSR) aims to transcribe spoken content from silent lip-motion videos and is particularly challenging in Mandarin due to severe viseme ambiguity and pervasive homophones. We propose VALLR-Pin, a two-stage Mandarin VSR framework that extends the VALLR architecture by explicitly incorporating Pinyin as an intermediate representation. In the first stage, a shared visual encoder feeds dual decoders that jointly predict Mandarin characters and their corresponding Pinyin sequences, encouraging more robust visual-linguistic representations. In the second stage, an LLM-based refinement module takes the predicted Pinyin sequence together with an N-best list of character hypotheses to resolve homophone-induced ambiguities. To further adapt the LLM to visual recognition errors, we fine-tune it on synthetic instruction data constructed from model-generated Pinyin-text pairs, enabling error-aware correction. Experiments on public Mandarin VSR benchmarks demonstrate that VALLR-Pin consistently improves transcription accuracy under multi-speaker conditions, highlighting the effectiveness of combining phonetic guidance with lightweight LLM refinement.

6 Chunk Based Speech Pre-training with High Resolution Finite Scalar Quantization 2025-09-19
展开

Low latency speech human-machine communication is becoming increasingly necessary as speech technology advances quickly in the last decade. One of the primary factors behind the advancement of speech technology is self-supervised learning. Most self-supervised learning algorithms are designed with full utterance assumption and compromises have to made if partial utterances are presented, which are common in the streaming applications. In this work, we propose a chunk based self-supervised learning (Chunk SSL) algorithm as an unified solution for both streaming and offline speech pre-training. Chunk SSL is optimized with the masked prediction loss and an acoustic encoder is encouraged to restore indices of those masked speech frames with help from unmasked frames in the same chunk and preceding chunks. A copy and append data augmentation approach is proposed to conduct efficient chunk based pre-training. Chunk SSL utilizes a finite scalar quantization (FSQ) module to discretize input speech features and our study shows a high resolution FSQ codebook, i.e., a codebook with vocabulary size up to a few millions, is beneficial to transfer knowledge from the pre-training task to the downstream tasks. A group masked prediction loss is employed during pre-training to alleviate the high memory and computation cost introduced by the large codebook. The proposed approach is examined in two speech to text tasks, i.e., speech recognition and speech translation. Experimental results on the \textsc{Librispeech} and \textsc{Must-C} datasets show that the proposed method could achieve very competitive results for speech to text tasks at both streaming and offline modes.

7 Natural Language Processing for Tigrinya: Current State and Future Directions 2025-07-23
展开

Despite being spoken by millions of people, Tigrinya remains severely underrepresented in Natural Language Processing (NLP) research. This work presents a comprehensive survey of NLP research for Tigrinya, analyzing over 50 studies from 2011 to 2025. We systematically review the current state of computational resources, models, and applications across fifteen downstream tasks, including morphological processing, part-of-speech tagging, named entity recognition, machine translation, question-answering, speech recognition, and synthesis. Our analysis reveals a clear trajectory from foundational, rule-based systems to modern neural architectures, with progress consistently driven by milestones in resource creation. We identify key challenges rooted in Tigrinya's morphological properties and resource scarcity, and highlight promising research directions, including morphology-aware modeling, cross-lingual transfer, and community-centered resource development. This work serves both as a reference for researchers and as a roadmap for advancing Tigrinya NLP. An anthology of surveyed studies and resources is publicly available.

8 Learning from Random Subspace Exploration: Generalized Test-Time Augmentation with Self-supervised Distillation 2025-07-02
展开

We introduce Generalized Test-Time Augmentation (GTTA), a highly effective method for improving the performance of a trained model, which unlike other existing Test-Time Augmentation approaches from the literature is general enough to be used off-the-shelf for many vision and non-vision tasks, such as classification, regression, image segmentation and object detection. By applying a new general data transformation, that randomly perturbs multiple times the PCA subspace projection of a test input, GTTA creates valid augmented samples from the data distribution with high diversity, properties we theoretically show that are essential for a Test-Time Augmentation method to be effective. Different from other existing methods, we also propose a final self-supervised learning stage in which the ensemble output, acting as an unsupervised teacher, is used to train the initial single student model, thus reducing significantly the test time computational cost. Our comparisons to strong TTA approaches and SoTA models on various vision and non-vision well-known datasets and tasks, such as image classification and segmentation, pneumonia detection, speech recognition and house price prediction, validate the generality of the proposed GTTA. Furthermore, we also prove its effectiveness on the more specific real-world task of salmon segmentation and detection in low-visibility underwater videos, for which we introduce DeepSalmon, the largest dataset of its kind in the literature.

11. zero shot tracking/few shot tracking/pose tracking/pose estimation

序号 标题 日期 摘要
1 Edit3r: Instant 3D Scene Editing from Sparse Unposed Images 2025-12-31
展开

We present Edit3r, a feed-forward framework that reconstructs and edits 3D scenes in a single pass from unposed, view-inconsistent, instruction-edited images. Unlike prior methods requiring per-scene optimization, Edit3r directly predicts instruction-aligned 3D edits, enabling fast and photorealistic rendering without optimization or pose estimation. A key challenge in training such a model lies in the absence of multi-view consistent edited images for supervision. We address this with (i) a SAM2-based recoloring strategy that generates reliable, cross-view-consistent supervision, and (ii) an asymmetric input strategy that pairs a recolored reference view with raw auxiliary views, encouraging the network to fuse and align disparate observations. At inference, our model effectively handles images edited by 2D methods such as InstructPix2Pix, despite not being exposed to such edits during training. For large-scale quantitative evaluation, we introduce DL3DV-Edit-Bench, a benchmark built on the DL3DV test split, featuring 20 diverse scenes, 4 edit types and 100 edits in total. Comprehensive quantitative and qualitative results show that Edit3r achieves superior semantic alignment and enhanced 3D consistency compared to recent baselines, while operating at significantly higher inference speed, making it promising for real-time 3D editing applications.

2 FineTec: Fine-Grained Action Recognition Under Temporal Corruption via Skeleton Decomposition and Sequence Completion 2025-12-31
展开

Recognizing fine-grained actions from temporally corrupted skeleton sequences remains a significant challenge, particularly in real-world scenarios where online pose estimation often yields substantial missing data. Existing methods often struggle to accurately recover temporal dynamics and fine-grained spatial structures, resulting in the loss of subtle motion cues crucial for distinguishing similar actions. To address this, we propose FineTec, a unified framework for Fine-grained action recognition under Temporal Corruption. FineTec first restores a base skeleton sequence from corrupted input using context-aware completion with diverse temporal masking. Next, a skeleton-based spatial decomposition module partitions the skeleton into five semantic regions, further divides them into dynamic and static subgroups based on motion variance, and generates two augmented skeleton sequences via targeted perturbation. These, along with the base sequence, are then processed by a physics-driven estimation module, which utilizes Lagrangian dynamics to estimate joint accelerations. Finally, both the fused skeleton position sequence and the fused acceleration sequence are jointly fed into a GCN-based action recognition head. Extensive experiments on both coarse-grained (NTU-60, NTU-120) and fine-grained (Gym99, Gym288) benchmarks show that FineTec significantly outperforms previous methods under various levels of temporal corruption. Specifically, FineTec achieves top-1 accuracies of 89.1% and 78.1% on the challenging Gym99-severe and Gym288-severe settings, respectively, demonstrating its robustness and generalizability. Code and datasets could be found at https://smartdianlab.github.io/projects-FineTec/.

3 CREPES-X: Hierarchical Bearing-Distance-Inertial Direct Cooperative Relative Pose Estimation System 2025-12-31
展开

Relative localization is critical for cooperation in autonomous multi-robot systems. Existing approaches either rely on shared environmental features or inertial assumptions or suffer from non-line-of-sight degradation and outliers in complex environments. Robust and efficient fusion of inter-robot measurements such as bearings, distances, and inertials for tens of robots remains challenging. We present CREPES-X (Cooperative RElative Pose Estimation System with multiple eXtended features), a hierarchical relative localization framework that enhances speed, accuracy, and robustness under challenging conditions, without requiring any global information. CREPES-X starts with a compact hardware design: InfraRed (IR) LEDs, an IR camera, an ultra-wideband module, and an IMU housed in a cube no larger than 6cm on each side. Then CREPES-X implements a two-stage hierarchical estimator to meet different requirements, considering speed, accuracy, and robustness. First, we propose a single-frame relative estimator that provides instant relative poses for multi-robot setups through a closed-form solution and robust bearing outlier rejection. Then a multi-frame relative estimator is designed to offer accurate and robust relative states by exploring IMU pre-integration via robocentric relative kinematics with loosely- and tightly-coupled optimization. Extensive simulations and real-world experiments validate the effectiveness of CREPES-X, showing robustness to up to 90% bearing outliers, proving resilience in challenging conditions, and achieving RMSE of 0.073m and 1.817° in real-world datasets.

4 LLHA-Net: A Hierarchical Attention Network for Two-View Correspondence Learning 2025-12-31
展开

Establishing the correct correspondence of feature points is a fundamental task in computer vision. However, the presence of numerous outliers among the feature points can significantly affect the matching results, reducing the accuracy and robustness of the process. Furthermore, a challenge arises when dealing with a large proportion of outliers: how to ensure the extraction of high-quality information while reducing errors caused by negative samples. To address these issues, in this paper, we propose a novel method called Layer-by-Layer Hierarchical Attention Network, which enhances the precision of feature point matching in computer vision by addressing the issue of outliers. Our method incorporates stage fusion, hierarchical extraction, and an attention mechanism to improve the network's representation capability by emphasizing the rich semantic information of feature points. Specifically, we introduce a layer-by-layer channel fusion module, which preserves the feature semantic information from each stage and achieves overall fusion, thereby enhancing the representation capability of the feature points. Additionally, we design a hierarchical attention module that adaptively captures and fuses global perception and structural semantic information using an attention mechanism. Finally, we propose two architectures to extract and integrate features, thereby improving the adaptability of our network. We conduct experiments on two public datasets, namely YFCC100M and SUN3D, and the results demonstrate that our proposed method outperforms several state-of-the-art techniques in both outlier removal and camera pose estimation. Source code is available at http://www.linshuyuan.com.

5 SliceLens: Fine-Grained and Grounded Error Slice Discovery for Multi-Instance Vision Tasks 2025-12-31
展开

Systematic failures of computer vision models on subsets with coherent visual patterns, known as error slices, pose a critical challenge for robust model evaluation. Existing slice discovery methods are primarily developed for image classification, limiting their applicability to multi-instance tasks such as detection, segmentation, and pose estimation. In real-world scenarios, error slices often arise from corner cases involving complex visual relationships, where existing instance-level approaches lacking fine-grained reasoning struggle to yield meaningful insights. Moreover, current benchmarks are typically tailored to specific algorithms or biased toward image classification, with artificial ground truth that fails to reflect real model failures. To address these limitations, we propose SliceLens, a hypothesis-driven framework that leverages LLMs and VLMs to generate and verify diverse failure hypotheses through grounded visual reasoning, enabling reliable identification of fine-grained and interpretable error slices. We further introduce FeSD (Fine-grained Slice Discovery), the first benchmark specifically designed for evaluating fine-grained error slice discovery across instance-level vision tasks, featuring expert-annotated and carefully refined ground-truth slices with precise grounding to local error regions. Extensive experiments on both existing benchmarks and FeSD demonstrate that SliceLens achieves state-of-the-art performance, improving Precision@10 by 0.42 (0.73 vs. 0.31) on FeSD, and identifies interpretable slices that facilitate actionable model improvements, as validated through model repair experiments.

6 Geometric Multi-Session Map Merging with Learned Local Descriptors 2025-12-30
展开

Multi-session map merging is crucial for extended autonomous operations in large-scale environments. In this paper, we present GMLD, a learning-based local descriptor framework for large-scale multi-session point cloud map merging that systematically aligns maps collected across different sessions with overlapping regions. The proposed framework employs a keypoint-aware encoder and a plane-based geometric transformer to extract discriminative features for loop closure detection and relative pose estimation. To further improve global consistency, we include inter-session scan matching cost factors in the factor-graph optimization stage. We evaluate our framework on the public datasets, as well as self-collected data from diverse environments. The results show accurate and robust map merging with low error, and the learned features deliver strong performance in both loop closure detection and relative pose estimation.

7 UniAct: Unified Motion Generation and Action Streaming for Humanoid Robots 2025-12-30
展开

A long-standing objective in humanoid robotics is the realization of versatile agents capable of following diverse multimodal instructions with human-level flexibility. Despite advances in humanoid control, bridging high-level multimodal perception with whole-body execution remains a significant bottleneck. Existing methods often struggle to translate heterogeneous instructions -- such as language, music, and trajectories -- into stable, real-time actions. Here we show that UniAct, a two-stage framework integrating a fine-tuned MLLM with a causal streaming pipeline, enables humanoid robots to execute multimodal instructions with sub-500 ms latency. By unifying inputs through a shared discrete codebook via FSQ, UniAct ensures cross-modal alignment while constraining motions to a physically grounded manifold. This approach yields a 19% improvement in the success rate of zero-shot tracking of imperfect reference motions. We validate UniAct on UniMoCap, our 20-hour humanoid motion benchmark, demonstrating robust generalization across diverse real-world scenarios. Our results mark a critical step toward responsive, general-purpose humanoid assistants capable of seamless interaction through unified perception and control.

8 Differentiable Physics-Driven Human Representation for Millimeter-Wave Based Pose Estimation 2025-12-28
展开

While millimeter-wave (mmWave) presents advantages for Human Pose Estimation (HPE) through its non-intrusive sensing capabilities, current mmWave-based HPE methods face limitations in two predominant input paradigms: Heatmap and Point Cloud (PC). Heatmap represents dense multi-dimensional features derived from mmWave, but is significantly affected by multipath propagation and hardware modulation noise. PC, a set of 3D points, is obtained by applying the Constant False Alarm Rate algorithm to the Heatmap, which suppresses noise but results in sparse human-related features. To address these limitations, we study the feasibility of providing an alternative input paradigm: Differentiable Physics-driven Human Representation (DIPR), which represents humans as an ensemble of Gaussian distributions with kinematic and electromagnetic parameters. Inspired by Gaussian Splatting, DIPR leverages human kinematic priors and mmWave propagation physics to enhance human features while mitigating non-human noise through two strategies: 1) We incorporate prior kinematic knowledge to initialize DIPR based on the Heatmap and establish multi-faceted optimization objectives, ensuring biomechanical validity and enhancing motion features. 2) We simulate complete mmWave processing pipelines, re-render a new Heatmap from DIPR, and compare it with the original Heatmap, avoiding spurious noise generation due to kinematic constraints overfitting. Experimental results on three datasets with four methods demonstrate that existing mmWave-based HPE methods can easily integrate DIPR and achieve superior performance.

9 PoseStreamer: A Multi-modal Framework for 6DoF Pose Estimation of Unseen Moving Objects 2025-12-28
展开

Six degree of freedom (6DoF) pose estimation for novel objects is a critical task in computer vision, yet it faces significant challenges in high-speed and low-light scenarios where standard RGB cameras suffer from motion blur. While event cameras offer a promising solution due to their high temporal resolution, current 6DoF pose estimation methods typically yield suboptimal performance in high-speed object moving scenarios. To address this gap, we propose PoseStreamer, a robust multi-modal 6DoF pose estimation framework designed specifically on high-speed moving scenarios. Our approach integrates three core components: an Adaptive Pose Memory Queue that utilizes historical orientation cues for temporal consistency, an Object-centric 2D Tracker that provides strong 2D priors to boost 3D center recall, and a Ray Pose Filter for geometric refinement along camera rays. Furthermore, we introduce MoCapCube6D, a novel multi-modal dataset constructed to benchmark performance under rapid motion. Extensive experiments demonstrate that PoseStreamer not only achieves superior accuracy in high-speed moving scenarios, but also exhibits strong generalizability as a template-free framework for unseen moving objects.

10 KV-Tracker: Real-Time Pose Tracking with Transformers 2025-12-27
展开

Multi-view 3D geometry networks offer a powerful prior but are prohibitively slow for real-time applications. We propose a novel way to adapt them for online use, enabling real-time 6-DoF pose tracking and online reconstruction of objects and scenes from monocular RGB videos. Our method rapidly selects and manages a set of images as keyframes to map a scene or object via $π^3$ with full bidirectional attention. We then cache the global self-attention block's key-value (KV) pairs and use them as the sole scene representation for online tracking. This allows for up to $15\times$ speedup during inference without the fear of drift or catastrophic forgetting. Our caching strategy is model-agnostic and can be applied to other off-the-shelf multi-view networks without retraining. We demonstrate KV-Tracker on both scene-level tracking and the more challenging task of on-the-fly object tracking and reconstruction without depth measurements or object priors. Experiments on the TUM RGB-D, 7-Scenes, Arctic and OnePose datasets show the strong performance of our system while maintaining high frame-rates up to ${\sim}27$ FPS.

11 ParaMaP: Parallel Mapping and Collision-free Motion Planning for Reactive Robot Manipulation 2025-12-27
展开

Real-time and collision-free motion planning remains challenging for robotic manipulation in unknown environments due to continuous perception updates and the need for frequent online replanning. To address these challenges, we propose a parallel mapping and motion planning framework that tightly integrates Euclidean Distance Transform (EDT)-based environment representation with a sampling-based model predictive control (SMPC) planner. On the mapping side, a dense distance-field-based representation is constructed using a GPU-based EDT and augmented with a robot-masked update mechanism to prevent false self-collision detections during online perception. On the planning side, motion generation is formulated as a stochastic optimization problem with a unified objective function and efficiently solved by evaluating large batches of candidate rollouts in parallel within a SMPC framework, in which a geometrically consistent pose tracking metric defined on SE(3) is incorporated to ensure fast and accurate convergence to the target pose. The entire mapping and planning pipeline is implemented on the GPU to support high-frequency replanning. The effectiveness of the proposed framework is validated through extensive simulations and real-world experiments on a 7-DoF robotic manipulator. More details are available at: https://zxw610.github.io/ParaMaP.

12 Tracking by Predicting 3-D Gaussians Over Time 2025-12-27
展开

We propose Video Gaussian Masked Autoencoders (Video-GMAE), a self-supervised approach for representation learning that encodes a sequence of images into a set of Gaussian splats moving over time. Representing a video as a set of Gaussians enforces a reasonable inductive bias: that 2-D videos are often consistent projections of a dynamic 3-D scene. We find that tracking emerges when pretraining a network with this architecture. Mapping the trajectory of the learnt Gaussians onto the image plane gives zero-shot tracking performance comparable to state-of-the-art. With small-scale finetuning, our models achieve 34.6% improvement on Kinetics, and 13.1% on Kubric datasets, surpassing existing self-supervised video approaches. The project page and code are publicly available at https://videogmae.org/ and https://github.com/tekotan/video-gmae.

13 Optical Flow-Guided 6DoF Object Pose Tracking with an Event Camera 2025-12-24
展开

Object pose tracking is one of the pivotal technologies in multimedia, attracting ever-growing attention in recent years. Existing methods employing traditional cameras encounter numerous challenges such as motion blur, sensor noise, partial occlusion, and changing lighting conditions. The emerging bio-inspired sensors, particularly event cameras, possess advantages such as high dynamic range and low latency, which hold the potential to address the aforementioned challenges. In this work, we present an optical flow-guided 6DoF object pose tracking method with an event camera. A 2D-3D hybrid feature extraction strategy is firstly utilized to detect corners and edges from events and object models, which characterizes object motion precisely. Then, we search for the optical flow of corners by maximizing the event-associated probability within a spatio-temporal window, and establish the correlation between corners and edges guided by optical flow. Furthermore, by minimizing the distances between corners and edges, the 6DoF object pose is iteratively optimized to achieve continuous pose tracking. Experimental results of both simulated and real events demonstrate that our methods outperform event-based state-of-the-art methods in terms of both accuracy and robustness.

14 Physics Informed Human Posture Estimation Based on 3D Landmarks from Monocular RGB-Videos 2025-12-07
展开

Applications providing automated coaching for physical training are increasing in popularity, for example physical therapy. These applications rely on accurate and robust pose estimation using monocular video streams. State-of-the-art models like BlazePose excel in real-time pose tracking, but their lack of anatomical constraints indicates improvement potential by including physical knowledge. We present a real-time post-processing algorithm fusing the strengths of BlazePose 3D and 2D estimations using a weighted optimization, penalizing deviations from expected bone length and biomechanical models. Bone length estimations are refined to the individual anatomy using a Kalman filter with adapting measurement trust. Evaluation using the Physio2.2M dataset shows a 10.2 percent reduction in 3D MPJPE and a 16.6 percent decrease in errors of angles between body segments compared to BlazePose 3D estimation. Our method provides a robust, anatomically consistent pose estimation based on a computationally efficient video-to-3D pose estimation, suitable for automated physiotherapy, healthcare, and sports coaching on consumer-level laptops and mobile devices. The refinement runs on the backend with anonymized data only.

15 Denoise to Track: Harnessing Video Diffusion Priors for Robust Correspondence 2025-12-04
展开

In this work, we introduce HeFT (Head-Frequency Tracker), a zero-shot point tracking framework that leverages the visual priors of pretrained video diffusion models. To better understand how they encode spatiotemporal information, we analyze the internal representations of Video Diffusion Transformer (VDiT). Our analysis reveals that attention heads act as minimal functional units with distinct specializations for matching, semantic understanding, and positional encoding. Additionally, we find that the low-frequency components in VDiT features are crucial for establishing correspondences, whereas the high-frequency components tend to introduce noise. Building on these insights, we propose a head- and frequency-aware feature selection strategy that jointly selects the most informative attention head and low-frequency components to enhance tracking performance. Specifically, our method extracts discriminative features through single-step denoising, applies feature selection, and employs soft-argmax localization with forward-backward consistency checks for correspondence estimation. Extensive experiments on TAP-Vid benchmarks demonstrate that HeFT achieves state-of-the-art zero-shot tracking performance, approaching the accuracy of supervised methods while eliminating the need for annotated training data. Our work further underscores the promise of video diffusion models as powerful foundation models for a wide range of downstream tasks, paving the way toward unified visual foundation models.

16 MIMIC-MJX: Neuromechanical Emulation of Animal Behavior 2025-11-25
展开

The primary output of the nervous system is movement and behavior. While recent advances have democratized pose tracking during complex behavior, kinematic trajectories alone provide only indirect access to the underlying control processes. Here we present MIMIC-MJX, a framework for learning biologically-plausible neural control policies from kinematics. MIMIC-MJX models the generative process of motor control by training neural controllers that learn to actuate biomechanically-realistic body models in physics simulation to reproduce real kinematic trajectories. We demonstrate that our implementation is accurate, fast, data-efficient, and generalizable to diverse animal body models. Policies trained with MIMIC-MJX can be utilized to both analyze neural control strategies and simulate behavioral experiments, illustrating its potential as an integrative modeling framework for neuroscience.

17 ShapeForce: Low-Cost Soft Robotic Wrist for Contact-Rich Manipulation 2025-11-25
展开

Contact feedback is essential for contact-rich robotic manipulation, as it allows the robot to detect subtle interaction changes and adjust its actions accordingly. Six-axis force-torque sensors are commonly used to obtain contact feedback, but their high cost and fragility have discouraged many researchers from adopting them in contact-rich tasks. To offer a more cost-efficient and easy-accessible source of contact feedback, we present ShapeForce, a low-cost, plug-and-play soft wrist that provides force-like signals for contact-rich robotic manipulation. Inspired by how humans rely on relative force changes in contact rather than precise force magnitudes, ShapeForce converts external force and torque into measurable deformations of its compliant core, which are then estimated via marker-based pose tracking and converted into force-like signals. Our design eliminates the need for calibration or specialized electronics to obtain exact values, and instead focuses on capturing force and torque changes sufficient for enabling contact-rich manipulation. Extensive experiments across diverse contact-rich tasks and manipulation policies demonstrate that ShapeForce delivers performance comparable to six-axis force-torque sensors at an extremely low cost.

18 ViTaMIn-B: A Reliable and Efficient Visuo-Tactile Bimanual Manipulation Interface 2025-11-08
展开

Handheld devices have opened up unprecedented opportunities to collect large-scale, high-quality demonstrations efficiently. However, existing systems often lack robust tactile sensing or reliable pose tracking to handle complex interaction scenarios, especially for bimanual and contact-rich tasks. In this work, we propose ViTaMIn-B, a more capable and efficient handheld data collection system for such tasks. We first design DuoTact, a novel compliant visuo-tactile sensor built with a flexible frame to withstand large contact forces during manipulation while capturing high-resolution contact geometry. To enhance the cross-sensor generalizability, we propose reconstructing the sensor's global deformation as a 3D point cloud and using it as the policy input. We further develop a robust, unified 6-DoF bimanual pose acquisition process using Meta Quest controllers, which eliminates the trajectory drift issue in common SLAM-based methods. Comprehensive user studies confirm the efficiency and high usability of ViTaMIn-B among novice and expert operators. Furthermore, experiments on four bimanual manipulation tasks demonstrate its superior task performance relative to existing systems. Project page: https://chuanyune.github.io/ViTaMIn-B_page/

19 When Tracking Fails: Analyzing Failure Modes of SAM2 for Point-Based Tracking in Surgical Videos 2025-10-02
展开

Video object segmentation (VOS) models such as SAM2 offer promising zero-shot tracking capabilities for surgical videos using minimal user input. Among the available input types, point-based tracking offers an efficient and low-cost alternative, yet its reliability and failure cases in complex surgical environments are not well understood. In this work, we systematically analyze the failure modes of point-based tracking in laparoscopic cholecystectomy videos. Focusing on three surgical targets, the gallbladder, grasper, and L-hook electrocautery, we compare the performance of point-based tracking with segmentation mask initialization. Our results show that point-based tracking is competitive for surgical tools but consistently underperforms for anatomical targets, where tissue similarity and ambiguous boundaries lead to failure. Through qualitative analysis, we reveal key factors influencing tracking outcomes and provide several actionable recommendations for selecting and placing tracking points to improve performance in surgical video analysis.

20 FERA: A Pose-Based Semantic Pipeline for Automated Foil Fencing Refereeing 2025-09-23
展开

Many multimedia tasks map raw video into structured semantic representations for downstream decision-making. Sports officiating is a representative case, where fast, subtle interactions must be judged via symbolic rules. We present FERA (FEncing Referee Assistant), a pose-based framework that turns broadcast foil fencing video into action tokens and rule-grounded explanations. From monocular footage, FERA extracts 2D poses, converts them into a 101-dimensional kinematic representation, and applies an encoder-only transformer (FERA-MDT) to recognize per-fencer footwork, blade actions, and blade-line position. To obtain a consistent single-fencer representation for both athletes, FERA processes each clip and a horizontally flipped copy, yielding time-aligned left/right predictions without requiring a multi-person pose pipeline. A dynamic temporal windowing scheme enables inference on untrimmed pose tracks. These structured predictions serve as tokens for a language model (FERA-LM) that applies simplified right-of-way rules to generate textual decisions. On 1,734 clips (2,386 annotated actions), FERA-MDT achieves a macro-F1 of 0.549 under 5-fold cross-validation, outperforming BiLSTM and TCN baselines. Combined with FERA-LM, the full pipeline recovers referee priority with 77.7% accuracy on 969 exchanges. FERA provides a case-study benchmark for pose-based semantic grounding in a two-person sport and illustrates a general pipeline for connecting video understanding with rule-based reasoning.

21 Seg2Track-SAM2: SAM2-based Multi-object Tracking and Segmentation for Zero-shot Generalization 2025-09-15
展开

Autonomous systems require robust Multi-Object Tracking (MOT) capabilities to operate reliably in dynamic environments. MOT ensures consistent object identity assignment and precise spatial delineation. Recent advances in foundation models, such as SAM2, have demonstrated strong zero-shot generalization for video segmentation, but their direct application to MOTS (MOT+Segmentation) remains limited by insufficient identity management and memory efficiency. This work introduces Seg2Track-SAM2, a framework that integrates pre-trained object detectors with SAM2 and a novel Seg2Track module to address track initialization, track management, and reinforcement. The proposed approach requires no fine-tuning and remains detector-agnostic. Experimental results on KITTI MOT and KITTI MOTS benchmarks show that Seg2Track-SAM2 achieves state-of-the-art (SOTA) performance, ranking fourth overall in both car and pedestrian classes on KITTI MOTS, while establishing a new benchmark in association accuracy (AssA). Furthermore, a sliding-window memory strategy reduces memory usage by up to 75% with negligible performance degradation, supporting deployment under resource constraints. These results confirm that Seg2Track-SAM2 advances MOTS by combining robust zero-shot tracking, enhanced identity preservation, and efficient memory utilization. The code is available at https://github.com/hcmr-lab/Seg2Track-SAM2

22 Matching Anything by Segmenting Anything 2024-06-06
展开

The robust association of the same objects across video frames in complex scenes is crucial for many applications, especially Multiple Object Tracking (MOT). Current methods predominantly rely on labeled domain-specific video datasets, which limits the cross-domain generalization of learned similarity embeddings. We propose MASA, a novel method for robust instance association learning, capable of matching any objects within videos across diverse domains without tracking labels. Leveraging the rich object segmentation from the Segment Anything Model (SAM), MASA learns instance-level correspondence through exhaustive data transformations. We treat the SAM outputs as dense object region proposals and learn to match those regions from a vast image collection. We further design a universal MASA adapter which can work in tandem with foundational segmentation or detection models and enable them to track any detected objects. Those combinations present strong zero-shot tracking ability in complex domains. Extensive tests on multiple challenging MOT and MOTS benchmarks indicate that the proposed method, using only unlabeled static images, achieves even better performance than state-of-the-art methods trained with fully annotated in-domain video sequences, in zero-shot association. Project Page: https://matchinganything.github.io/

23 Multi-Scale Memory Comparison for Zero-/Few-Shot Anomaly Detection 2023-08-09
展开

Anomaly detection has gained considerable attention due to its broad range of applications, particularly in industrial defect detection. To address the challenges of data collection, researchers have introduced zero-/few-shot anomaly detection techniques that require minimal normal images for each category. However, complex industrial scenarios often involve multiple objects, presenting a significant challenge. In light of this, we propose a straightforward yet powerful multi-scale memory comparison framework for zero-/few-shot anomaly detection. Our approach employs a global memory bank to capture features across the entire image, while an individual memory bank focuses on simplified scenes containing a single object. The efficacy of our method is validated by its remarkable achievement of 4th place in the zero-shot track and 2nd place in the few-shot track of the Visual Anomaly and Novelty Detection (VAND) competition.

24 APRIL-GAN: A Zero-/Few-Shot Anomaly Classification and Segmentation Method for CVPR 2023 VAND Workshop Challenge Tracks 1&2: 1st Place on Zero-shot AD and 4th Place on Few-shot AD 2023-05-27
展开

In this technical report, we briefly introduce our solution for the Zero/Few-shot Track of the Visual Anomaly and Novelty Detection (VAND) 2023 Challenge. For industrial visual inspection, building a single model that can be rapidly adapted to numerous categories without or with only a few normal reference images is a promising research direction. This is primarily because of the vast variety of the product types. For the zero-shot track, we propose a solution based on the CLIP model by adding extra linear layers. These layers are used to map the image features to the joint embedding space, so that they can compare with the text features to generate the anomaly maps. Besides, when the reference images are available, we utilize multiple memory banks to store their features and compare them with the features of the test images during the testing phase. In this challenge, our method achieved first place in the zero-shot track, especially excelling in segmentation with an impressive F1 score improvement of 0.0489 over the second-ranked participant. Furthermore, in the few-shot track, we secured the fourth position overall, with our classification F1 score of 0.8687 ranking first among all participating teams.

25 Unifying Tracking and Image-Video Object Detection 2022-11-20
展开

Objection detection (OD) has been one of the most fundamental tasks in computer vision. Recent developments in deep learning have pushed the performance of image OD to new heights by learning-based, data-driven approaches. On the other hand, video OD remains less explored, mostly due to much more expensive data annotation needs. At the same time, multi-object tracking (MOT) which requires reasoning about track identities and spatio-temporal trajectories, shares similar spirits with video OD. However, most MOT datasets are class-specific (e.g., person-annotated only), which constrains a model's flexibility to perform tracking on other objects. We propose TrIVD (Tracking and Image-Video Detection), the first framework that unifies image OD, video OD, and MOT within one end-to-end model. To handle the discrepancies and semantic overlaps of category labels across datasets, TrIVD formulates detection/tracking as grounding and reasons about object categories via visual-text alignments. The unified formulation enables cross-dataset, multi-task training, and thus equips TrIVD with the ability to leverage frame-level features, video-level spatio-temporal relations, as well as track identity associations. With such joint training, we can now extend the knowledge from OD data, that comes with much richer object category annotations, to MOT and achieve zero-shot tracking capability. Experiments demonstrate that multi-task co-trained TrIVD outperforms single-task baselines across all image/video OD and MOT tasks. We further set the first baseline on the new task of zero-shot tracking.

26 Exploring the Effectiveness of Self-supervised Learning and Classifier Chains in Emotion Recognition of Nonverbal Vocalizations 2022-06-21
展开

We present an emotion recognition system for nonverbal vocalizations (NVs) submitted to the ExVo Few-Shot track of the ICML Expressive Vocalizations Competition 2022. The proposed method uses self-supervised learning (SSL) models to extract features from NVs and uses a classifier chain to model the label dependency between emotions. Experimental results demonstrate that the proposed method can significantly improve the performance of this task compared to several baseline methods. Our proposed method obtained a mean concordance correlation coefficient (CCC) of $0.725$ in the validation set and $0.739$ in the test set, while the best baseline method only obtained $0.554$ in the validation set. We publicate our code at https://github.com/Aria-K-Alethia/ExVo to help others to reproduce our experimental results.

27 The Multi-speaker Multi-style Voice Cloning Challenge 2021 2021-04-05
展开

The Multi-speaker Multi-style Voice Cloning Challenge (M2VoC) aims to provide a common sizable dataset as well as a fair testbed for the benchmarking of the popular voice cloning task. Specifically, we formulate the challenge to adapt an average TTS model to the stylistic target voice with limited data from target speaker, evaluated by speaker identity and style similarity. The challenge consists of two tracks, namely few-shot track and one-shot track, where the participants are required to clone multiple target voices with 100 and 5 samples respectively. There are also two sub-tracks in each track. For sub-track a, to fairly compare different strategies, the participants are allowed to use only the training data provided by the organizer strictly. For sub-track b, the participants are allowed to use any data publicly available. In this paper, we present a detailed explanation on the tasks and data used in the challenge, followed by a summary of submitted systems and evaluation results.

12. text to 3d/image to 3d/text to texture

序号 标题 日期 摘要
1 PartMotionEdit: Fine-Grained Text-Driven 3D Human Motion Editing via Part-Level Modulation 2025-12-30
展开

Existing text-driven 3D human motion editing methods have demonstrated significant progress, but are still difficult to precisely control over detailed, part-specific motions due to their global modeling nature. In this paper, we propose PartMotionEdit, a novel fine-grained motion editing framework that operates via part-level semantic modulation. The core of PartMotionEdit is a Part-aware Motion Modulation (PMM) module, which builds upon a predefined five-part body decomposition. PMM dynamically predicts time-varying modulation weights for each body part, enabling precise and interpretable editing of local motions. To guide the training of PMM, we also introduce a part-level similarity curve supervision mechanism enhanced with dual-layer normalization. This mechanism assists PMM in learning semantically consistent and editable distributions across all body parts. Furthermore, we design a Bidirectional Motion Interaction (BMI) module. It leverages bidirectional cross-modal attention to achieve more accurate semantic alignment between textual instructions and motion semantics. Extensive quantitative and qualitative evaluations on a well-known benchmark demonstrate that PartMotionEdit outperforms the state-of-the-art methods.

2 GVSynergy-Det: Synergistic Gaussian-Voxel Representations for Multi-View 3D Object Detection 2025-12-29
展开

Image-based 3D object detection aims to identify and localize objects in 3D space using only RGB images, eliminating the need for expensive depth sensors required by point cloud-based methods. Existing image-based approaches face two critical challenges: methods achieving high accuracy typically require dense 3D supervision, while those operating without such supervision struggle to extract accurate geometry from images alone. In this paper, we present GVSynergy-Det, a novel framework that enhances 3D detection through synergistic Gaussian-Voxel representation learning. Our key insight is that continuous Gaussian and discrete voxel representations capture complementary geometric information: Gaussians excel at modeling fine-grained surface details while voxels provide structured spatial context. We introduce a dual-representation architecture that: 1) adapts generalizable Gaussian Splatting to extract complementary geometric features for detection tasks, and 2) develops a cross-representation enhancement mechanism that enriches voxel features with geometric details from Gaussian fields. Unlike previous methods that either rely on time-consuming per-scene optimization or utilize Gaussian representations solely for depth regularization, our synergistic strategy directly leverages features from both representations through learnable integration, enabling more accurate object localization. Extensive experiments demonstrate that GVSynergy-Det achieves state-of-the-art results on challenging indoor benchmarks, significantly outperforming existing methods on both ScanNetV2 and ARKitScenes datasets, all without requiring any depth or dense 3D geometry supervision (e.g., point clouds or TSDF).

3 SwinTF3D: A Lightweight Multimodal Fusion Approach for Text-Guided 3D Medical Image Segmentation 2025-12-28
展开

The recent integration of artificial intelligence into medical imaging has driven remarkable advances in automated organ segmentation. However, most existing 3D segmentation frameworks rely exclusively on visual learning from large annotated datasets restricting their adaptability to new domains and clinical tasks. The lack of semantic understanding in these models makes them ineffective in addressing flexible, user-defined segmentation objectives. To overcome these limitations, we propose SwinTF3D, a lightweight multimodal fusion approach that unifies visual and linguistic representations for text-guided 3D medical image segmentation. The model employs a transformer-based visual encoder to extract volumetric features and integrates them with a compact text encoder via an efficient fusion mechanism. This design allows the system to understand natural-language prompts and correctly align semantic cues with their corresponding spatial structures in medical volumes, while producing accurate, context-aware segmentation results with low computational overhead. Extensive experiments on the BTCV dataset demonstrate that SwinTF3D achieves competitive Dice and IoU scores across multiple organs, despite its compact architecture. The model generalizes well to unseen data and offers significant efficiency gains compared to conventional transformer-based segmentation networks. Bridging visual perception with linguistic understanding, SwinTF3D establishes a practical and interpretable paradigm for interactive, text-driven 3D medical image segmentation, opening perspectives for more adaptive and resource-efficient solutions in clinical imaging.

4 Pose-Guided Residual Refinement for Interpretable Text-to-Motion Generation and Editing 2025-12-27
展开

Text-based 3D motion generation aims to automatically synthesize diverse motions from natural-language descriptions to extend user creativity, whereas motion editing modifies an existing motion sequence in response to text while preserving its overall structure. Pose-code-based frameworks such as CoMo map quantifiable pose attributes into discrete pose codes that support interpretable motion control, but their frame-wise representation struggles to capture subtle temporal dynamics and high-frequency details, often degrading reconstruction fidelity and local controllability. To address this limitation, we introduce pose-guided residual refinement for motion (PGR$^2$M), a hybrid representation that augments interpretable pose codes with residual codes learned via residual vector quantization (RVQ). A pose-guided RVQ tokenizer decomposes motion into pose latents that encode coarse global structure and residual latents that model fine-grained temporal variations. Residual dropout further discourages over-reliance on residuals, preserving the semantic alignment and editability of the pose codes. On top of this tokenizer, a base Transformer autoregressively predicts pose codes from text, and a refine Transformer predicts residual codes conditioned on text, pose codes, and quantization stage. Experiments on HumanML3D and KIT-ML show that PGR$^2$M improves Fréchet inception distance and reconstruction metrics for both generation and editing compared with CoMo and recent diffusion- and tokenization-based baselines, while user studies confirm that it enables intuitive, structure-preserving motion edits.

5 SAM 3D for 3D Object Reconstruction from Remote Sensing Images 2025-12-27
展开

Monocular 3D building reconstruction from remote sensing imagery is essential for scalable urban modeling, yet existing methods often require task-specific architectures and intensive supervision. This paper presents the first systematic evaluation of SAM 3D, a general-purpose image-to-3D foundation model, for monocular remote sensing building reconstruction. We benchmark SAM 3D against TRELLIS on samples from the NYC Urban Dataset, employing Frechet Inception Distance (FID) and CLIP-based Maximum Mean Discrepancy (CMMD) as evaluation metrics. Experimental results demonstrate that SAM 3D produces more coherent roof geometry and sharper boundaries compared to TRELLIS. We further extend SAM 3D to urban scene reconstruction through a segment-reconstruct-compose pipeline, demonstrating its potential for urban scene modeling. We also analyze practical limitations and discuss future research directions. These findings provide practical guidance for deploying foundation models in urban 3D reconstruction and motivate future integration of scene-level structural priors.

6 A Three-Level Alignment Framework for Large-Scale 3D Retrieval and Controlled 4D Generation 2025-12-25
展开

We introduce Uni4D, a unified framework for large scale open vocabulary 3D retrieval and controlled 4D generation based on structured three level alignment across text, 3D models, and image modalities. Built upon the Align3D 130 dataset, Uni4D employs a 3D text multi head attention and search model to optimize text to 3D retrieval through improved semantic alignment. The framework further strengthens cross modal alignment through three components: precise text to 3D retrieval, multi view 3D to image alignment, and image to text alignment for generating temporally consistent 4D assets. Experimental results demonstrate that Uni4D achieves high quality 3D retrieval and controllable 4D generation, advancing dynamic multimodal understanding and practical applications.

7 SegMo: Segment-aligned Text to 3D Human Motion Generation 2025-12-24
展开

Generating 3D human motions from textual descriptions is an important research problem with broad applications in video games, virtual reality, and augmented reality. Recent methods align the textual description with human motion at the sequence level, neglecting the internal semantic structure of modalities. However, both motion descriptions and motion sequences can be naturally decomposed into smaller and semantically coherent segments, which can serve as atomic alignment units to achieve finer-grained correspondence. Motivated by this, we propose SegMo, a novel Segment-aligned text-conditioned human Motion generation framework to achieve fine-grained text-motion alignment. Our framework consists of three modules: (1) Text Segment Extraction, which decomposes complex textual descriptions into temporally ordered phrases, each representing a simple atomic action; (2) Motion Segment Extraction, which partitions complete motion sequences into corresponding motion segments; and (3) Fine-grained Text-Motion Alignment, which aligns text and motion segments with contrastive learning. Extensive experiments demonstrate that SegMo improves the strong baseline on two widely used datasets, achieving an improved TOP 1 score of 0.553 on the HumanML3D test set. Moreover, thanks to the learned shared embedding space for text and motion segments, SegMo can also be applied to retrieval-style tasks such as motion grounding and motion-to-text retrieval.

8 Enhancing annotations for 5D apple pose estimation through 3D Gaussian Splatting (3DGS) 2025-12-23
展开

Automating tasks in orchards is challenging because of the large amount of variation in the environment and occlusions. One of the challenges is apple pose estimation, where key points, such as the calyx, are often occluded. Recently developed pose estimation methods no longer rely on these key points, but still require them for annotations, making annotating challenging and time-consuming. Due to the abovementioned occlusions, there can be conflicting and missing annotations of the same fruit between different images. Novel 3D reconstruction methods can be used to simplify annotating and enlarge datasets. We propose a novel pipeline consisting of 3D Gaussian Splatting to reconstruct an orchard scene, simplified annotations, automated projection of the annotations to images, and the training and evaluation of a pose estimation method. Using our pipeline, 105 manual annotations were required to obtain 28,191 training labels, a reduction of 99.6%. Experimental results indicated that training with labels of fruits that are $\leq95%$ occluded resulted in the best performance, with a neutral F1 score of 0.927 on the original images and 0.970 on the rendered images. Adjusting the size of the training dataset had small effects on the model performance in terms of F1 score and pose estimation accuracy. It was found that the least occluded fruits had the best position estimation, which worsened as the fruits became more occluded. It was also found that the tested pose estimation method was unable to correctly learn the orientation estimation of apples.

9 Towards Autonomous Navigation in Endovascular Interventions 2025-12-19
展开

Cardiovascular diseases remain the leading cause of global mortality, with minimally invasive treatment options offered through endovascular interventions. However, the precision and adaptability of current robotic systems for endovascular navigation are limited by heuristic control, low autonomy, and the absence of haptic feedback. This thesis presents an integrated AI-driven framework for autonomous guidewire navigation in complex vascular environments, addressing key challenges in data availability, simulation fidelity, and navigational accuracy. A high-fidelity, real-time simulation platform, CathSim, is introduced for reinforcement learning based catheter navigation, featuring anatomically accurate vascular models and contact dynamics. Building on CathSim, the Expert Navigation Network is developed, a policy that fuses visual, kinematic, and force feedback for autonomous tool control. To mitigate data scarcity, the open-source, bi-planar fluoroscopic dataset Guide3D is proposed, comprising more than 8,700 annotated images for 3D guidewire reconstruction. Finally, SplineFormer, a transformer-based model, is introduced to directly predict guidewire geometry as continuous B-spline parameters, enabling interpretable, real-time navigation. The findings show that combining high-fidelity simulation, multimodal sensory fusion, and geometric modelling substantially improves autonomous endovascular navigation and supports safer, more precise minimally invasive procedures.

10 SynergyWarpNet: Attention-Guided Cooperative Warping for Neural Portrait Animation 2025-12-19
展开

Recent advances in neural portrait animation have demonstrated remarked potential for applications in virtual avatars, telepresence, and digital content creation. However, traditional explicit warping approaches often struggle with accurate motion transfer or recovering missing regions, while recent attention-based warping methods, though effective, frequently suffer from high complexity and weak geometric grounding. To address these issues, we propose SynergyWarpNet, an attention-guided cooperative warping framework designed for high-fidelity talking head synthesis. Given a source portrait, a driving image, and a set of reference images, our model progressively refines the animation in three stages. First, an explicit warping module performs coarse spatial alignment between the source and driving image using 3D dense optical flow. Next, a reference-augmented correction module leverages cross-attention across 3D keypoints and texture features from multiple reference images to semantically complete occluded or distorted regions. Finally, a confidence-guided fusion module integrates the warped outputs with spatially-adaptive fusing, using a learned confidence map to balance structural alignment and visual consistency. Comprehensive evaluations on benchmark datasets demonstrate state-of-the-art performance.

11 SNOW: Spatio-Temporal Scene Understanding with World Knowledge for Open-World Embodied Reasoning 2025-12-18
展开

Autonomous robotic systems require spatio-temporal understanding of dynamic environments to ensure reliable navigation and interaction. While Vision-Language Models (VLMs) provide open-world semantic priors, they lack grounding in 3D geometry and temporal dynamics. Conversely, geometric perception captures structure and motion but remains semantically sparse. We propose SNOW (Scene Understanding with Open-World Knowledge), a training-free and backbone-agnostic framework for unified 4D scene understanding that integrates VLM-derived semantics with point cloud geometry and temporal consistency. SNOW processes synchronized RGB images and 3D point clouds, using HDBSCAN clustering to generate object-level proposals that guide SAM2-based segmentation. Each segmented region is encoded through our proposed Spatio-Temporal Tokenized Patch Encoding (STEP), producing multimodal tokens that capture localized semantic, geometric, and temporal attributes. These tokens are incrementally integrated into a 4D Scene Graph (4DSG), which serves as 4D prior for downstream reasoning. A lightweight SLAM backend anchors all STEP tokens spatially in the environment, providing the global reference alignment, and ensuring unambiguous spatial grounding across time. The resulting 4DSG forms a queryable, unified world model through which VLMs can directly interpret spatial scene structure and temporal dynamics. Experiments on a diverse set of benchmarks demonstrate that SNOW enables precise 4D scene understanding and spatially grounded inference, thereby setting new state-of-the-art performance in several settings, highlighting the importance of structured 4D priors for embodied reasoning and autonomous robotics.

12 Geodiffussr: Generative Terrain Texturing with Elevation Fidelity 2025-11-28
展开

Large-scale terrain generation remains a labor-intensive task in computer graphics. We introduce Geodiffussr, a flow-matching pipeline that synthesizes text-guided texture maps while strictly adhering to a supplied Digital Elevation Map (DEM). The core mechanism is multi-scale content aggregation (MCA): DEM features from a pretrained encoder are injected into UNet blocks at multiple resolutions to enforce global-to-local elevation consistency. Compared with a non-MCA baseline, MCA markedly improves visual fidelity and strengthens height-appearance coupling (FID $\downarrow$ 49.16%, LPIPS $\downarrow$ 32.33%, $Δ$dCor $\downarrow$ to 0.0016). To train and evaluate Geodiffussr, we assemble a globally distributed, biome- and climate-stratified corpus of triplets pairing SRTM-derived DEMs with Sentinel-2 imagery and vision-grounded natural-language captions that describe visible land cover. We position Geodiffussr as a strong baseline and step toward controllable 2.5D landscape generation for coarse-scale ideation and previz, complementary to physically based terrain and ecosystem simulators.

13 TexTailor: Customized Text-aligned Texturing via Effective Resampling 2025-06-12
展开

We present TexTailor, a novel method for generating consistent object textures from textual descriptions. Existing text-to-texture synthesis approaches utilize depth-aware diffusion models to progressively generate images and synthesize textures across predefined multiple viewpoints. However, these approaches lead to a gradual shift in texture properties across viewpoints due to (1) insufficient integration of previously synthesized textures at each viewpoint during the diffusion process and (2) the autoregressive nature of the texture synthesis process. Moreover, the predefined selection of camera positions, which does not account for the object's geometry, limits the effective use of texture information synthesized from different viewpoints, ultimately degrading overall texture consistency. In TexTailor, we address these issues by (1) applying a resampling scheme that repeatedly integrates information from previously synthesized textures within the diffusion process, and (2) fine-tuning a depth-aware diffusion model on these resampled textures. During this process, we observed that using only a few training images restricts the model's original ability to generate high-fidelity images aligned with the conditioning, and therefore propose an performance preservation loss to mitigate this issue. Additionally, we improve the synthesis of view-consistent textures by adaptively adjusting camera positions based on the object's geometry. Experiments on a subset of the Objaverse dataset and the ShapeNet car dataset demonstrate that TexTailor outperforms state-of-the-art methods in synthesizing view-consistent textures. The source code for TexTailor is available at https://github.com/Adios42/Textailor

14 CzechLynx: A Dataset for Individual Identification and Pose Estimation of the Eurasian Lynx 2025-06-05
展开

We introduce CzechLynx, the first large-scale, open-access dataset for individual identification, pose estimation, and instance segmentation of the Eurasian lynx (Lynx lynx). CzechLynx contains 39,760 camera trap images annotated with segmentation masks, identity labels, and 20-point skeletons and covers 319 unique individuals across 15 years of systematic monitoring in two geographically distinct regions: southwest Bohemia and the Western Carpathians. In addition to the real camera trap data, we provide a large complementary set of photorealistic synthetic images and a Unity-based generation pipeline with diffusion-based text-to-texture modeling, capable of producing arbitrarily large amounts of synthetic data spanning diverse environments, poses, and coat-pattern variations. To enable systematic testing across realistic ecological scenarios, we define three complementary evaluation protocols: (i) geo-aware, (ii) time-aware open-set, and (iii) time-aware closed-set, covering cross-regional and long-term monitoring settings. With the provided resources, CzechLynx offers a unique, flexible benchmark for robust evaluation of computer vision and machine learning models across realistic ecological scenarios.

15 Personalize Your Gaussian: Consistent 3D Scene Personalization from a Single Image 2025-05-20
展开

Personalizing 3D scenes from a single reference image enables intuitive user-guided editing, which requires achieving both multi-view consistency across perspectives and referential consistency with the input image. However, these goals are particularly challenging due to the viewpoint bias caused by the limited perspective provided in a single image. Lacking the mechanisms to effectively expand reference information beyond the original view, existing methods of image-conditioned 3DGS personalization often suffer from this viewpoint bias and struggle to produce consistent results. Therefore, in this paper, we present Consistent Personalization for 3D Gaussian Splatting (CP-GS), a framework that progressively propagates the single-view reference appearance to novel perspectives. In particular, CP-GS integrates pre-trained image-to-3D generation and iterative LoRA fine-tuning to extract and extend the reference appearance, and finally produces faithful multi-view guidance images and the personalized 3DGS outputs through a view-consistent generation process guided by geometric cues. Extensive experiments on real-world scenes show that our CP-GS effectively mitigates the viewpoint bias, achieving high-quality personalization that significantly outperforms existing methods.

16 Bridging Geometry-Coherent Text-to-3D Generation with Multi-View Diffusion Priors and Gaussian Splatting 2025-05-07
展开

Score Distillation Sampling (SDS) leverages pretrained 2D diffusion models to advance text-to-3D generation but neglects multi-view correlations, being prone to geometric inconsistencies and multi-face artifacts in the generated 3D content. In this work, we propose Coupled Score Distillation (CSD), a framework that couples multi-view joint distribution priors to ensure geometrically consistent 3D generation while enabling the stable and direct optimization of 3D Gaussian Splatting. Specifically, by reformulating the optimization as a multi-view joint optimization problem, we derive an effective optimization rule that effectively couples multi-view priors to guide optimization across different viewpoints while preserving the diversity of generated 3D assets. Additionally, we propose a framework that directly optimizes 3D Gaussian Splatting (3D-GS) with random initialization to generate geometrically consistent 3D content. We further employ a deformable tetrahedral grid, initialized from 3D-GS and refined through CSD, to produce high-quality, refined meshes. Quantitative and qualitative experimental results demonstrate the efficiency and competitive quality of our approach.

17 CasTex: Cascaded Text-to-Texture Synthesis via Explicit Texture Maps and Physically-Based Shading 2025-04-09
展开

This work investigates text-to-texture synthesis using diffusion models to generate physically-based texture maps. We aim to achieve realistic model appearances under varying lighting conditions. A prominent solution for the task is score distillation sampling. It allows recovering a complex texture using gradient guidance given a differentiable rasterization and shading pipeline. However, in practice, the aforementioned solution in conjunction with the widespread latent diffusion models produces severe visual artifacts and requires additional regularization such as implicit texture parameterization. As a more direct alternative, we propose an approach using cascaded diffusion models for texture synthesis (CasTex). In our setup, score distillation sampling yields high-quality textures out-of-the box. In particular, we were able to omit implicit texture parameterization in favor of an explicit parameterization to improve the procedure. In the experiments, we show that our approach significantly outperforms state-of-the-art optimization-based solutions on public texture synthesis benchmarks.

18 MD-ProjTex: Texturing 3D Shapes with Multi-Diffusion Projection 2025-04-03
展开

We introduce MD-ProjTex, a method for fast and consistent text-guided texture generation for 3D shapes using pretrained text-to-image diffusion models. At the core of our approach is a multi-view consistency mechanism in UV space, which ensures coherent textures across different viewpoints. Specifically, MD-ProjTex fuses noise predictions from multiple views at each diffusion step and jointly updates the per-view denoising directions to maintain 3D consistency. In contrast to existing state-of-the-art methods that rely on optimization or sequential view synthesis, MD-ProjTex is computationally more efficient and achieves better quantitative and qualitative results.

19 Progressive Rendering Distillation: Adapting Stable Diffusion for Instant Text-to-Mesh Generation without 3D Data 2025-03-27
展开

It is highly desirable to obtain a model that can generate high-quality 3D meshes from text prompts in just seconds. While recent attempts have adapted pre-trained text-to-image diffusion models, such as Stable Diffusion (SD), into generators of 3D representations (e.g., Triplane), they often suffer from poor quality due to the lack of sufficient high-quality 3D training data. Aiming at overcoming the data shortage, we propose a novel training scheme, termed as Progressive Rendering Distillation (PRD), eliminating the need for 3D ground-truths by distilling multi-view diffusion models and adapting SD into a native 3D generator. In each iteration of training, PRD uses the U-Net to progressively denoise the latent from random noise for a few steps, and in each step it decodes the denoised latent into 3D output. Multi-view diffusion models, including MVDream and RichDreamer, are used in joint with SD to distill text-consistent textures and geometries into the 3D outputs through score distillation. Since PRD supports training without 3D ground-truths, we can easily scale up the training data and improve generation quality for challenging text prompts with creative concepts. Meanwhile, PRD can accelerate the inference speed of the generation model in just a few steps. With PRD, we train a Triplane generator, namely TriplaneTurbo, which adds only $2.5%$ trainable parameters to adapt SD for Triplane generation. TriplaneTurbo outperforms previous text-to-3D generators in both efficiency and quality. Specifically, it can produce high-quality 3D meshes in 1.2 seconds and generalize well for challenging text input. The code is available at https://github.com/theEricMa/TriplaneTurbo.

20 ProcTex: Consistent and Interactive Text-to-texture Synthesis for Part-based Procedural Models 2025-01-28
展开

Recent advances in generative modeling have driven significant progress in text-guided texture synthesis. However, current methods focus on synthesizing texture for single static 3D object, and struggle to handle entire families of shapes, such as those produced by procedural programs. Applying existing methods naively to each procedural shape is too slow to support exploring different parameter configurations at interactive rates, and also results in inconsistent textures across the procedural shapes. To this end, we introduce ProcTex, the first text-to-texture system designed for part-based procedural models. ProcTex enables consistent and real-time text-guided texture synthesis for families of shapes, which integrates seamlessly with the interactive design flow of procedural modeling. To ensure consistency, our core approach is to synthesize texture for a template shape from the procedural model, followed by a texture transfer stage to apply the texture to other procedural shapes via solving dense correspondence. To ensure interactiveness, we propose a novel correspondence network and show that dense correspondence can be effectively learned by a neural network for procedural models. We also develop several techniques, including a retexturing pipeline to support structural variation from procedural parameters, and part-level UV texture map generation for local appearance editing. Extensive experiments on a diverse set of procedural models validate ProcTex's ability to produce high-quality, visually consistent textures while supporting interactive applications.

21 TexPro: Text-guided PBR Texturing with Procedural Material Modeling 2024-10-21
展开

In this paper, we present TexPro, a novel method for high-fidelity material generation for input 3D meshes given text prompts. Unlike existing text-conditioned texture generation methods that typically generate RGB textures with baked lighting, TexPro is able to produce diverse texture maps via procedural material modeling, which enables physically-based rendering, relighting, and additional benefits inherent to procedural materials. Specifically, we first generate multi-view reference images given the input textual prompt by employing the latest text-to-image model. We then derive texture maps through rendering-based optimization with recent differentiable procedural materials. To this end, we design several techniques to handle the misalignment between the generated multi-view images and 3D meshes, and introduce a novel material agent that enhances material classification and matching by exploring both part-level understanding and object-aware material reasoning. Experiments demonstrate the superiority of the proposed method over existing SOTAs, and its capability of relighting.

22 View Selection for 3D Captioning via Diffusion Ranking 2024-04-11
展开

Scalable annotation approaches are crucial for constructing extensive 3D-text datasets, facilitating a broader range of applications. However, existing methods sometimes lead to the generation of hallucinated captions, compromising caption quality. This paper explores the issue of hallucination in 3D object captioning, with a focus on Cap3D method, which renders 3D objects into 2D views for captioning using pre-trained models. We pinpoint a major challenge: certain rendered views of 3D objects are atypical, deviating from the training data of standard image captioning models and causing hallucinations. To tackle this, we present DiffuRank, a method that leverages a pre-trained text-to-3D model to assess the alignment between 3D objects and their 2D rendered views, where the view with high alignment closely represent the object's characteristics. By ranking all rendered views and feeding the top-ranked ones into GPT4-Vision, we enhance the accuracy and detail of captions, enabling the correction of 200k captions in the Cap3D dataset and extending it to 1 million captions across Objaverse and Objaverse-XL datasets. Additionally, we showcase the adaptability of DiffuRank by applying it to pre-trained text-to-image models for a Visual Question Answering task, where it outperforms the CLIP model.

23 Reconstructing Hand-Held Objects in 3D from Images and Videos 2024-04-09
展开

Objects manipulated by the hand (i.e., manipulanda) are particularly challenging to reconstruct from Internet videos. Not only does the hand occlude much of the object, but also the object is often only visible in a small number of image pixels. At the same time, two strong anchors emerge in this setting: (1) estimated 3D hands help disambiguate the location and scale of the object, and (2) the set of manipulanda is small relative to all possible objects. With these insights in mind, we present a scalable paradigm for hand-held object reconstruction that builds on recent breakthroughs in large language/vision models and 3D object datasets. Given a monocular RGB video, we aim to reconstruct hand-held object geometry in 3D, over time. In order to obtain the best performing single frame model, we first present MCC-Hand-Object (MCC-HO), which jointly reconstructs hand and object geometry given a single RGB image and inferred 3D hand as inputs. Subsequently, we prompt a text-to-3D generative model using GPT-4(V) to retrieve a 3D object model that matches the object in the image(s); we call this alignment Retrieval-Augmented Reconstruction (RAR). RAR provides unified object geometry across all frames, and the result is rigidly aligned with both the input images and 3D MCC-HO observations in a temporally consistent manner. Experiments demonstrate that our approach achieves state-of-the-art performance on lab and Internet image/video datasets. We make our code and models available on the project website: https://janehwu.github.io/mcc-ho

13. automated theorem proving/interactive theorem proving/formal verification

序号 标题 日期 摘要
1 A Tale of 1001 LoC: Potential Runtime Error-Guided Specification Synthesis for Verifying Large-Scale Programs 2025-12-31
展开

Fully automated verification of large-scale software and hardware systems is arguably the holy grail of formal methods. Large language models (LLMs) have recently demonstrated their potential for enhancing the degree of automation in formal verification by, e.g., generating formal specifications as essential to deductive verification, yet exhibit poor scalability due to long-context reasoning limitations and, more importantly, the difficulty of inferring complex, interprocedural specifications. This paper presents Preguss -- a modular, fine-grained framework for automating the generation and refinement of formal specifications. Preguss synergizes between static analysis and deductive verification by steering two components in a divide-and-conquer fashion: (i) potential runtime error-guided construction and prioritization of verification units, and (ii) LLM-aided synthesis of interprocedural specifications at the unit level. We show that Preguss substantially outperforms state-of-the-art LLM-based approaches and, in particular, it enables highly automated RTE-freeness verification for real-world programs with over a thousand LoC, with a reduction of 80.6%~88.9% human verification effort.

2 Incremental Certificate Learning for Hybrid Neural Network Verification . A Solver Architecture for Piecewise-Linear Safety Queries 2025-12-30
展开

Formal verification of deep neural networks is increasingly required in safety-critical domains, yet exact reasoning over piecewise-linear (PWL) activations such as ReLU suffers from a combinatorial explosion of activation patterns. This paper develops a solver-grade methodology centered on \emph{incremental certificate learning}: we maximize the work performed in a sound linear relaxation (LP propagation, convex-hull constraints, stabilization), and invoke exact PWL reasoning only through a selective \emph{exactness gate} when relaxations become inconclusive. Our architecture maintains a node-based search state together with a reusable global lemma store and a proof log. Learning occurs in two layers: (i) \emph{linear lemmas} (cuts) whose validity is justified by checkable certificates, and (ii) \emph{Boolean conflict clauses} extracted from infeasible guarded cores, enabling DPLL(T)-style pruning across nodes. We present an end-to-end algorithm (ICL-Verifier) and a companion hybrid pipeline (HSRV) combining relaxation pruning, exact checks, and branch-and-bound splitting. We prove soundness, and we state a conditional completeness result under exhaustive splitting for compact domains and PWL operators. Finally, we outline an experimental protocol against standardized benchmarks (VNN-LIB / VNN-COMP) to evaluate pruning effectiveness, learned-lemma reuse, and exact-gate efficiency.

3 Beyond Correctness: Exposing LLM-generated Logical Flaws in Reasoning via Multi-step Automated Theorem Proving 2025-12-29
展开

Large Language Models (LLMs) have demonstrated impressive reasoning capabilities, leading to their adoption in high-stakes domains such as healthcare, law, and scientific research. However, their reasoning often contains subtle logical errors masked by fluent language, posing significant risks for critical applications. While existing approaches like fact-checking, self-consistency methods, and rule-based validation provide partial solutions, they fail to detect complex logical flaws in multi-step reasoning. To overcome these challenges, we present MATP, an evaluation framework for systematically verifying LLM reasoning via Multi-step Automatic Theorem Proving. MATP translates natural language reasoning into First-Order Logic (FOL) and applies automated theorem provers to assess step-by-step logical validity. This approach identifies hidden logical errors and provides fine-grained classifications of reasoning correctness. Evaluations on a benchmark comprising 10,830 reasoning instances generated by 10 LLMs across tasks from PrOntoQA-OOD, ProofWriter, and FOLIO show that MATP surpasses prompting-based baselines by over 42 percentage points in reasoning step verification. It further reveals model-level disparities, with reasoning models generating more logically coherent outputs than general models. These results demonstrate MATP's potential to enhance the trustworthiness of LLM-generated reasoning.

4 Symbolic Specification and Reasoning for Quantum Data and Operations 2025-12-26
展开

In quantum information and computation research, symbolic methods have been widely used for human specification and reasoning about quantum states and operations. At the same time, they are essential for ensuring the scalability and efficiency of automated reasoning and verification tools for quantum algorithms and programs. However, a formal theory for symbolic specification and reasoning about quantum data and operations is still lacking, which significantly limits the practical applicability of automated verification techniques in quantum computing. In this paper, we present a general logical framework, called Symbolic Operator Logic $\mathbf{SOL}$, which enables symbolic specification and reasoning about quantum data and operations. Within this framework, a classical first-order logical language is embedded into a language of formal operators used to specify quantum data and operations, including their recursive definitions. This embedding allows reasoning about their properties modulo a chosen theory of the underlying classical data (e.g., Boolean algebra or group theory), thereby leveraging existing automated verification tools developed for classical computing. It should be emphasised that this embedding of classical first-order logic into $\mathbf{SOL}$ is precisely what makes the symbolic method possible. We envision that this framework can provide a conceptual foundation for the formal verification and automated theorem proving of quantum computation and information in proof assistants such as Lean, Coq, and related systems.

5 ReVEAL: GNN-Guided Reverse Engineering for Formal Verification of Optimized Multipliers 2025-12-24
展开

We present ReVEAL, a graph-learning-based method for reverse engineering of multiplier architectures to improve algebraic circuit verification techniques. Our framework leverages structural graph features and learning-driven inference to identify architecture patterns at scale, enabling robust handling of large optimized multipliers. We demonstrate applicability across diverse multiplier benchmarks and show improvements in scalability and accuracy compared to traditional rule-based approaches. The method integrates smoothly with existing verification flows and supports downstream algebraic proof strategies.

6 Bridging Efficiency and Safety: Formal Verification of Neural Networks with Early Exits 2025-12-23
展开

Ensuring the safety and efficiency of AI systems is a central goal of modern research. Formal verification provides guarantees of neural network robustness, while early exits improve inference efficiency by enabling intermediate predictions. Yet verifying networks with early exits introduces new challenges due to their conditional execution paths. In this work, we define a robustness property tailored to early exit architectures and show how off-the-shelf solvers can be used to assess it. We present a baseline algorithm, enhanced with an early stopping strategy and heuristic optimizations that maintain soundness and completeness. Experiments on multiple benchmarks validate our framework's effectiveness and demonstrate the performance gains of the improved algorithm. Alongside the natural inference acceleration provided by early exits, we show that they also enhance verifiability, enabling more queries to be solved in less time compared to standard networks. Together with a robustness analysis, we show how these metrics can help users navigate the inherent trade-off between accuracy and efficiency.

7 DafnyMPI: A Dafny Library for Verifying Message-Passing Concurrent Programs 2025-12-21
展开

The Message Passing Interface (MPI) is widely used in parallel, high-performance programming, yet writing bug-free software that uses MPI remains difficult. We introduce DafnyMPI, a novel, scalable approach to formally verifying MPI software. DafnyMPI allows proving deadlock freedom, termination, and functional equivalence with simpler sequential implementations. In contrast to existing specialized frameworks, DafnyMPI avoids custom concurrency logics and instead relies on Dafny, a verification-ready programming language used for sequential programs, extending it with concurrent reasoning abilities. DafnyMPI is implemented as a library that enables safe MPI programming by requiring users to specify the communication topology upfront and to verify that calls to communication primitives such as MPI_ISEND and MPI_WAIT meet their preconditions. We formalize DafnyMPI using a core calculus and prove that the preconditions suffice to guarantee deadlock freedom. Functional equivalence is proved via rely-guarantee reasoning over message payloads and a system that guarantees safe use of read and write buffers. Termination and the absence of runtime errors are proved using standard Dafny techniques. To further demonstrate the applicability of DafnyMPI, we verify numerical solutions to three canonical partial differential equations. We believe DafnyMPI demonstrates how to make formal verification viable for a broader class of programs and provides proof engineers with additional tools for software verification of parallel and concurrent systems.

8 MSC-180: A Benchmark for Automated Formal Theorem Proving from Mathematical Subject Classification 2025-12-20
展开

Automated Theorem Proving (ATP) represents a core research direction in artificial intelligence for achieving formal reasoning and verification, playing a significant role in advancing machine intelligence. However, current large language model (LLM)-based theorem provers suffer from limitations such as restricted domain coverage and weak generalization in mathematical reasoning. To address these issues, we propose MSC-180, a benchmark for evaluation based on the MSC2020 mathematical subject classification. It comprises 180 formal verification problems, 3 advanced problems from each of 60 mathematical branches, spanning from undergraduate to graduate levels. Each problem has undergone multiple rounds of verification and refinement by domain experts to ensure formal accuracy. Evaluations of state-of-the-art LLM-based theorem provers under the pass@32 setting reveal that the best model achieves only an 18.89% overall pass rate, with prominent issues including significant domain bias (maximum domain coverage 41.7%) and a difficulty gap (significantly lower pass rates on graduate-level problems). To further quantify performance variability across mathematical domains, we introduce the coefficient of variation (CV) as an evaluation metric. The observed CV values are 4-6 times higher than the statistical high-variability threshold, indicating that the models still rely on pattern matching from training corpora rather than possessing transferable reasoning mechanisms and systematic generalization capabilities. MSC-180, together with its multi-dimensional evaluation framework, provides a discriminative and systematic benchmark for driving the development of next-generation AI systems with genuine mathematical reasoning abilities.

9 Advancing Mathematical Research via Human-AI Interactive Theorem Proving 2025-12-10
展开

We investigate how large language models can be used as research tools in scientific computing while preserving mathematical rigor. We propose a human-in-the-loop workflow for interactive theorem proving and discovery with LLMs. Human experts retain control over problem formulation and admissible assumptions, while the model searches for proofs or contradictions, proposes candidate properties and theorems, and helps construct structures and parameters that satisfy explicit constraints, supported by numerical experiments and simple verification checks. Experts treat these outputs as raw material, further refine them, and organize the results into precise statements and rigorous proofs. We instantiate this workflow in a case study on the connection between manifold optimization and Grover's quantum search algorithm, where the pipeline helps identify invariant subspaces, explore Grover-compatible retractions, and obtain convergence guarantees for the retraction-based gradient method. The framework provides a practical template for integrating large language models into frontier mathematical research, enabling faster exploration of proof space and algorithm design while maintaining transparent reasoning responsibilities. Although illustrated on manifold optimization problems in quantum computing, the principles extend to other core areas of scientific computing.

10 Gold-Medal-Level Olympiad Geometry Solving with Efficient Heuristic Auxiliary Constructions 2025-11-27
展开

Automated theorem proving in Euclidean geometry, particularly for International Mathematical Olympiad (IMO) level problems, remains a major challenge and an important research focus in Artificial Intelligence. In this paper, we present a highly efficient method for geometry theorem proving that runs entirely on CPUs without relying on neural network-based inference. Our initial study shows that a simple random strategy for adding auxiliary points can achieve silver-medal level human performance on IMO. Building on this, we propose HAGeo, a Heuristic-based method for adding Auxiliary constructions in Geometric deduction that solves 28 of 30 problems on the IMO-30 benchmark, achieving gold-medal level performance and surpassing AlphaGeometry, a competitive neural network-based approach, by a notable margin. To evaluate our method and existing approaches more comprehensively, we further construct HAGeo-409, a benchmark consisting of 409 geometry problems with human-assessed difficulty levels. Compared with the widely used IMO-30, our benchmark poses greater challenges and provides a more precise evaluation, setting a higher bar for geometry theorem proving.

11 Spark-Prover-X1: Formal Theorem Proving Through Diverse Data Training 2025-11-17
展开

Large Language Models (LLMs) have shown significant promise in automated theorem proving, yet progress is often constrained by the scarcity of diverse and high-quality formal language data. To address this issue, we introduce Spark-Prover-X1, a 7B parameter model trained via an three-stage framework designed to unlock the reasoning potential of more accessible and moderately-sized LLMs. The first stage infuses deep knowledge through continuous pre-training on a broad mathematical corpus, enhanced by a suite of novel data tasks. Key innovation is a "CoT-augmented state prediction" task to achieve fine-grained reasoning. The second stage employs Supervised Fine-tuning (SFT) within an expert iteration loop to specialize both the Spark-Prover-X1-7B and Spark-Formalizer-X1-7B models. Finally, a targeted round of Group Relative Policy Optimization (GRPO) is applied to sharpen the prover's capabilities on the most challenging problems. To facilitate robust evaluation, particularly on problems from real-world examinations, we also introduce ExamFormal-Bench, a new benchmark dataset of 402 formal problems. Experimental results demonstrate that Spark-Prover achieves state-of-the-art performance among similarly-sized open-source models within the "Whole-Proof Generation" paradigm. It shows exceptional performance on difficult competition benchmarks, notably solving 27 problems on PutnamBench (pass@32) and achieving 24.0% on CombiBench (pass@32). Our work validates that this diverse training data and progressively refined training pipeline provides an effective path for enhancing the formal reasoning capabilities of lightweight LLMs. We will release both Spark-Prover-X1-7B and Spark-Formalizer-X1-7B, along with the ExamFormal-Bench dataset, in the near future.

12 Improving Autoformalization Using Direct Dependency Retrieval 2025-11-15
展开

The convergence of deep learning and formal mathematics has spurred research in formal verification. Statement autoformalization, a crucial first step in this process, aims to translate informal descriptions into machine-verifiable representations but remains a significant challenge. The core difficulty lies in the fact that existing methods often suffer from a lack of contextual awareness, leading to hallucination of formal definitions and theorems. Furthermore, current retrieval-augmented approaches exhibit poor precision and recall for formal library dependency retrieval, and lack the scalability to effectively leverage ever-growing public datasets. To bridge this gap, we propose a novel retrieval-augmented framework based on DDR (\textit{Direct Dependency Retrieval}) for statement autoformalization. Our DDR method directly generates candidate library dependencies from natural language mathematical descriptions and subsequently verifies their existence within the formal library via an efficient suffix array check. Leveraging this efficient search mechanism, we constructed a dependency retrieval dataset of over 500,000 samples and fine-tuned a high-precision DDR model. Experimental results demonstrate that our DDR model significantly outperforms SOTA methods in both retrieval precision and recall. Consequently, an autoformalizer equipped with DDR shows consistent performance advantages in both single-attempt accuracy and multi-attempt stability compared to models using traditional selection-based RAG methods.

13 Proof Strategy Extraction from LLMs for Enhancing Symbolic Provers 2025-10-11
展开

One important approach to software verification is interactive theorem proving. However, writing formal proofs often requires substantial human effort, making proof automation highly important. Traditionally, proof automation has relied on symbolic provers. Recently, large language models (LLMs) have demonstrated strong capabilities in theorem proving, complementing symbolic provers. Nonetheless, prompting LLMs can be expensive and may pose security risks for confidential codebases. As a result, purely symbolic approaches remain important even in the LLM era, as they are cost-effective, secure, and complement the strengths of LLMs. Motivated by these considerations, we ask a new research question: can we extract the internal strategies of LLMs to enhance the capabilities of symbolic provers? As an initial attempt to answer this question, we propose Strat2Rocq, which extracts proof strategies from LLMs and formalizes them as lemmas in Rocq. These lemmas are accessible to symbolic provers such as CoqHammer. With the addition of these LLM-extracted lemmas, CoqHammer is able to prove more theorems. The knowledge extraction process involves analyzing the proof trajectories of LLMs on a training set of proved theorems. For each theorem, we prompt the LLM to generate a natural language proof, then ask it to summarize this proof into formalized lemmas with proofs. We also employ a standard agentic approach to mitigate errors during formalization. Our evaluation demonstrates that, on open-source Rocq projects for software verification, Strat2Rocq enhances the success rate of CoqHammer by 13.41%.

14 L-Mosaics and Bounded Join-Semilattices in Isabelle/HOL 2025-09-24
展开

We present a complete formalization in Isabelle/HOL of the object part of an equivalence between L-mosaics and bounded join-semilattices, employing an AI-assisted methodology that integrates large language models as reasoning assistants throughout the proof development process. The equivalence was originally established by Cangiotti, Linzi, and Talotti in their study of hypercompositional structures related to orthomodular lattices and quantum logic. Our formalization rigorously verifies the main theoretical result and demonstrates the mutual inverse property of the transformations establishing this equivalence. The development showcases both the mathematical depth of multivalued algebraic operations and the potential for AI-enhanced interactive theorem proving in tackling complex formalization projects.

15 An ACL2s Interface to Z3 2025-07-25
展开

We present Lisp-Z3, an extension to the ACL2s systems programming framework (ASPF) that supports the use of the Z3 satisfiability modulo theories (SMT) solver. Lisp-Z3 allows one to develop tools written using the full feature set of Common Lisp that can use both ACL2/s (either ACL2 or ACL2s) and Z3 as services, combining the power of SMT and interactive theorem proving. Lisp-Z3 is usable by anyone who would like to interact with Z3 from Common Lisp, as it does not depend on the availability of ACL2/s. We discuss the use of Lisp-Z3 in three applications. The first is a Sudoku solver. The second is SeqSolve, a string solver which solved a larger number of benchmark problems more quickly than any other existing solver at the time of its publishing. Finally, Lisp-Z3 was also used in the context of hardware-in-the-loop fuzzing of wireless routers, where low latency was an important goal. The latter two applications leveraged the ability of Lisp-Z3 to integrate Z3 with ACL2s code. We have further plans to use Lisp-Z3 inside of ACL2s to provide more powerful automated support for dependent types, and in particular more efficient generation of counterexamples to properties involving dependent types. This paper describes the usage and implementation of Lisp-Z3, as well as an evaluation of its use in the aforementioned applications.

16 Probabilistically Tightened Linear Relaxation-based Perturbation Analysis for Neural Network Verification 2025-07-07
展开

We present $\textbf{P}$robabilistically $\textbf{T}$ightened $\textbf{Li}$near $\textbf{R}$elaxation-based $\textbf{P}$erturbation $\textbf{A}$nalysis ($\texttt{PT-LiRPA}$), a novel framework that combines over-approximation techniques from LiRPA-based approaches with a sampling-based method to compute tight intermediate reachable sets. In detail, we show that with negligible computational overhead, $\texttt{PT-LiRPA}$ exploiting the estimated reachable sets, significantly tightens the lower and upper linear bounds of a neural network's output, reducing the computational cost of formal verification tools while providing probabilistic guarantees on verification soundness. Extensive experiments on standard formal verification benchmarks, including the International Verification of Neural Networks Competition, show that our $\texttt{PT-LiRPA}$-based verifier improves robustness certificates, i.e., the certified lower bound of $\varepsilon$ perturbation tolerated by the models, by up to 3.31X and 2.26X compared to related work. Importantly, our probabilistic approach results in a valuable solution for challenging competition entries where state-of-the-art formal verification methods fail, allowing us to provide answers with high confidence (i.e., at least 99%).

17 Quantifying Bounded Rationality: Formal Verification of Simon's Satisficing Through Flexible Stochastic Dominance 2025-07-02
展开

This paper introduces Flexible First-Order Stochastic Dominance (FFSD), a mathematically rigorous framework that formalizes Herbert Simon's concept of bounded rationality using the Lean 4 theorem prover. We develop machine-verified proofs demonstrating that FFSD bridges classical expected utility theory with Simon's satisficing behavior through parameterized tolerance thresholds. Our approach yields several key results: (1) a critical threshold $\varepsilon &lt; 1/2$ that guarantees uniqueness of reference points, (2) an equivalence theorem linking FFSD to expected utility maximization for approximate indicator functions, and (3) extensions to multi-dimensional decision settings. By encoding these concepts in Lean 4's dependent type theory, we provide the first machine-checked formalization of Simon's bounded rationality, creating a foundation for mechanized reasoning about economic decision-making under uncertainty with cognitive limitations. This work contributes to the growing intersection between formal mathematics and economic theory, demonstrating how interactive theorem proving can advance our understanding of behavioral economics concepts that have traditionally been expressed only qualitatively.

18 APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning 2025-05-09
展开

Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with large language models (LLMs) remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair viaLLM and Lean cOllaboration), a modular, model-agnostic agentic framework that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proof-generation results at a low token and sampling budgets. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sub-lemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low top-K budget. The repaired sub-proofs are recombined and reverified, iterating up to a user-controlled maximum number of attempts. On the miniF2F benchmark, we establish a new state-of-the-art accuracy of 84.9% among sub 8B-parameter models (as of August 2025) while keeping the sampling budget below one hundred. Moreover, Apollo raises the state-of-the-art accuracy for Goedel-Prover-SFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. General-purpose models (o3-mini, o4-mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compiler-guided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving.

19 Automated Discovery of Tactic Libraries for Interactive Theorem Proving 2025-03-31
展开

Enabling more concise and modular proofs is essential for advancing formal reasoning using interactive theorem provers (ITPs). Since many ITPs, such as Rocq and Lean, use tactic-style proofs, learning higher-level custom tactics is crucial for proof modularity and automation. This paper presents a novel approach to tactic discovery, which leverages Tactic Dependence Graphs (TDGs) to identify reusable proof strategies across multiple proofs. TDGs capture logical dependencies between tactic applications while abstracting away irrelevant syntactic details, allowing for both the discovery of new tactics and the refactoring of existing proofs into more modular forms. We have implemented this technique in a tool called TacMiner and compare it against an anti-unification-based approach Peano to tactic discovery. Our evaluation demonstrates that TacMiner can learn 3x as many tactics as Peano and reduces the size of proofs by 26% across all benchmarks. Furthermore, our evaluation demonstrates the benefits of learning custom tactics for proof automation, allowing a state-of-the-art proof automation tool to achieve a relative increase of 172% in terms of success rate.

20 A Certified Proof Checker for Deep Neural Network Verification in Imandra 2024-05-17
展开

Recent advances in the verification of deep neural networks (DNNs) have opened the way for a broader usage of DNN verification technology in many application areas, including safety-critical ones. However, DNN verifiers are themselves complex programs that have been shown to be susceptible to errors and numerical imprecision; this, in turn, has raised the question of trust in DNN verifiers. One prominent attempt to address this issue is enhancing DNN verifiers with the capability of producing certificates of their results that are subject to independent algorithmic checking. While formulations of Marabou certificate checking already exist on top of the state-of-the-art DNN verifier Marabou, they are implemented in C++, and that code itself raises the question of trust (e.g., in the precision of floating point calculations or guarantees for implementation soundness). Here, we present an alternative implementation of the Marabou certificate checking in Imandra -- an industrial functional programming language and an interactive theorem prover (ITP) -- that allows us to obtain full proof of certificate correctness. The significance of the result is two-fold. Firstly, it gives stronger independent guarantees for Marabou proofs. Secondly, it opens the way for the wider adoption of DNN verifiers in interactive theorem proving in the same way as many ITPs already incorporate SMT solvers.

鸣谢

感谢原始项目 @zezhishao/DailyArXiv 提供的灵感。

About

自动论文推送(每月更新)

Resources

Stars

Watchers

Forks