Skip to content

Context-optimized MCP server for web scraping. Reduces LLM token usage by 70-90% through server-side CSS filtering and HTML-to-markdown conversion.

License

Notifications You must be signed in to change notification settings

cotdp/scraper-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

95 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Scraper MCP

CI Docker GHCR

A context-optimized MCP server for web scraping. Reduces LLM token usage by 70-90% through server-side HTML filtering, markdown conversion, and CSS selector targeting.

Quick Start

# Run with Docker (GitHub Container Registry)
docker run -d -p 8000:8000 --name scraper-mcp ghcr.io/cotdp/scraper-mcp:latest

# Add to Claude Code
claude mcp add --transport http scraper http://localhost:8000/mcp --scope user

Try it:

> scrape https://example.com
> scrape and filter .article-content from https://blog.example.com/post

Endpoints:

  • MCP: http://localhost:8000/mcp
  • Dashboard: http://localhost:8000/

Features

Web Scraping

  • 4 scraping modes: Raw HTML, markdown, plain text, link extraction
  • JavaScript rendering: Optional Playwright-based rendering for SPAs and dynamic content
  • CSS selector filtering: Extract only relevant content server-side
  • Batch operations: Process multiple URLs concurrently
  • Smart caching: Three-tier cache system (realtime/default/static)
  • Retry logic: Exponential backoff for transient failures

Perplexity AI Integration

  • Web search: AI-powered search with citations (perplexity tool)
  • Reasoning: Complex analysis with step-by-step reasoning (perplexity_reason tool)
  • Requires PERPLEXITY_API_KEY environment variable

Monitoring Dashboard

  • Real-time request statistics and cache metrics
  • Interactive API playground for testing tools
  • Runtime configuration without restarts

Dashboard

See Dashboard Guide for details.

Available Tools

Tool Description
scrape_url HTML converted to markdown (best for LLMs)
scrape_url_html Raw HTML content
scrape_url_text Plain text extraction
scrape_extract_links Extract all links with metadata
perplexity AI web search with citations
perplexity_reason Complex reasoning tasks

All tools support:

  • Single URL or batch operations (pass array)
  • timeout and max_retries parameters
  • css_selector for targeted extraction
  • render_js for JavaScript rendering (SPAs, dynamic content)

Resources

Note: Resources are disabled by default to reduce context overhead. Enable with --enable-resources flag or ENABLE_RESOURCES=true environment variable.

MCP resources provide read-only data access via URI-based addressing:

URI Description
cache://stats Cache hit rate, size, entry counts
cache://requests List of recent request IDs
cache://request/{id} Retrieve cached result by ID
config://current Current runtime configuration
config://scraping Timeout, retries, concurrency
server://info Version, uptime, capabilities
server://metrics Request counts, success rates

Prompts

Note: Prompts are disabled by default to reduce context overhead. Enable with --enable-prompts flag or ENABLE_PROMPTS=true environment variable.

MCP prompts provide reusable workflow templates:

Prompt Description
analyze_webpage Structured webpage analysis
summarize_content Generate content summaries
extract_data Extract specific data types
seo_audit Comprehensive SEO check
link_audit Analyze internal/external links
research_topic Multi-source research
fact_check Verify claims across sources

See API Reference for complete documentation.

JavaScript Rendering

For SPAs (React, Vue, Angular) and pages with dynamic content, enable JavaScript rendering:

# Enable JS rendering with render_js=True
scrape_url(["https://spa-example.com"], render_js=True)

# Combine with CSS selector for targeted extraction
scrape_url(["https://react-app.com"], render_js=True, css_selector=".main-content")

When to use render_js=True:

  • Single-page applications (SPAs) - React, Vue, Angular, etc.
  • Sites with lazy-loaded content
  • Pages requiring JavaScript execution
  • Dynamic content loaded via AJAX/fetch

When NOT needed:

  • Static HTML pages (most blogs, news sites, documentation)
  • Server-rendered content
  • Simple websites without JavaScript dependencies

How it works:

  • Uses Playwright with headless Chromium
  • Single browser instance with pooled contexts (~300MB base + 10-20MB per context)
  • Lazy initialization (browser only starts when first JS render is requested)
  • Semaphore-controlled concurrency (default: 5 concurrent contexts)

Memory considerations:

  • Base requests provider: ~50MB
  • With Playwright active: ~300-500MB depending on concurrent contexts
  • Recommend minimum 1GB container memory when using JS rendering

Testing JS rendering: Use the dashboard playground at http://localhost:8000/ to test JavaScript rendering interactively with the toggle switch.

Docker Deployment

Quick Run

# Using GitHub Container Registry (recommended)
docker run -d -p 8000:8000 --name scraper-mcp ghcr.io/cotdp/scraper-mcp:latest

# With JavaScript rendering (requires more memory)
docker run -d -p 8000:8000 --memory=1g --name scraper-mcp ghcr.io/cotdp/scraper-mcp:latest

# With Perplexity AI
docker run -d -p 8000:8000 -e PERPLEXITY_API_KEY=your_key ghcr.io/cotdp/scraper-mcp:latest

Docker Compose

For persistent storage and custom configuration:

# docker-compose.yml
services:
  scraper-mcp:
    image: ghcr.io/cotdp/scraper-mcp:latest
    ports:
      - "8000:8000"
    volumes:
      - cache:/app/cache
    environment:
      - PERPLEXITY_API_KEY=${PERPLEXITY_API_KEY:-}
      - PLAYWRIGHT_MAX_CONTEXTS=5
    deploy:
      resources:
        limits:
          memory: 1G  # Recommended for JS rendering
    restart: unless-stopped

volumes:
  cache:
docker-compose up -d

Production deployment (pre-built image from GHCR):

docker-compose -f docker-compose.prod.yml up -d

Upgrading

To upgrade an existing deployment to the latest version:

# Pull the latest image
docker pull ghcr.io/cotdp/scraper-mcp:latest

# Restart with new image (docker-compose)
docker-compose down && docker-compose up -d

# Or for production deployments
docker-compose -f docker-compose.prod.yml pull
docker-compose -f docker-compose.prod.yml up -d

# Or restart a standalone container
docker stop scraper-mcp && docker rm scraper-mcp
docker run -d -p 8000:8000 --name scraper-mcp ghcr.io/cotdp/scraper-mcp:latest

Your cache data persists in the named volume across upgrades.

Available Tags

Tag Description
latest Latest stable release
main Latest build from main branch
v0.4.0 Specific version

Configuration

Create a .env file for custom settings:

# Perplexity AI (optional)
PERPLEXITY_API_KEY=your_key_here

# JavaScript rendering (optional, requires Playwright)
PLAYWRIGHT_MAX_CONTEXTS=5       # Max concurrent browser contexts
PLAYWRIGHT_TIMEOUT=30000        # Page load timeout in ms
PLAYWRIGHT_DISABLE_GPU=true     # Reduce memory in containers

# MCP features (disabled by default to reduce context overhead)
ENABLE_RESOURCES=true           # Enable MCP resources
ENABLE_PROMPTS=true             # Enable MCP prompts

# Proxy (optional)
HTTP_PROXY=http://proxy.example.com:8080
HTTPS_PROXY=http://proxy.example.com:8080

# ScrapeOps proxy service (optional)
SCRAPEOPS_API_KEY=your_key_here
SCRAPEOPS_RENDER_JS=true

See Configuration Guide for all options.

Claude Desktop

Add to your MCP settings:

{
  "mcpServers": {
    "scraper": {
      "url": "http://localhost:8000/mcp"
    }
  }
}

Claude Code Skills

This project includes Agent Skills that provide Claude Code with specialized knowledge for using the scraper tools effectively.

Skill Description
web-scraping CSS selectors, batch operations, retry configuration
perplexity AI search, reasoning tasks, conversation patterns

Install Skills

Copy the skills to your Claude Code skills directory:

# Clone or download this repo, then:
cp -r .claude/skills/web-scraping ~/.claude/skills/
cp -r .claude/skills/perplexity ~/.claude/skills/

Or install directly:

# web-scraping skill
mkdir -p ~/.claude/skills/web-scraping
curl -o ~/.claude/skills/web-scraping/SKILL.md \
  https://raw.githubusercontent.com/cotdp/scraper-mcp/main/.claude/skills/web-scraping/SKILL.md

# perplexity skill
mkdir -p ~/.claude/skills/perplexity
curl -o ~/.claude/skills/perplexity/SKILL.md \
  https://raw.githubusercontent.com/cotdp/scraper-mcp/main/.claude/skills/perplexity/SKILL.md

Once installed, Claude Code will automatically use these skills when performing web scraping or Perplexity AI tasks.

Documentation

Document Description
API Reference Complete tool documentation, parameters, CSS selectors
Configuration Environment variables, proxy setup, ScrapeOps
Dashboard Monitoring UI, playground, runtime config
Development Local setup, architecture, contributing
Testing Test suite, coverage, adding tests

Local Development

# Install
uv pip install -e ".[dev]"

# Run
python -m scraper_mcp

# Test
pytest

# Lint
ruff check . && mypy src/

See Development Guide for details.

License

MIT License


Last updated: December 23, 2025

About

Context-optimized MCP server for web scraping. Reduces LLM token usage by 70-90% through server-side CSS filtering and HTML-to-markdown conversion.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Packages

 
 
 

Contributors 2

  •  
  •