Professional A/B Testing Tool with ML Predictions, Bayesian Analysis & ROI Calculations
Built for data scientists, growth teams, and anyone who wants to make data-driven decisions with confidence.
- Frequentist Approach: Z-tests, confidence intervals, p-values
- Sample Size Calculator: Power analysis with industry benchmarks
- Effect Size Detection: Cohen's h and practical significance
- Sequential Testing: Early stopping recommendations
- Beta-Binomial Model: Prior and posterior distributions
- Probability Calculations: P(B > A) with Monte Carlo simulation
- Expected Loss: Risk assessment for business decisions
- Credible Intervals: Bayesian confidence ranges
- Success Prediction: AI estimates test outcome probability
- Industry Benchmarks: Performance comparison by sector
- Risk Assessment: Automated factor analysis
- Optimization Suggestions: Data-driven recommendations
- ROI Calculator: Complete financial impact analysis
- Cost-Benefit Analysis: Test investment vs. expected returns
- Payback Period: Time to recoup testing costs
- Annual Projections: Long-term revenue impact
- Progressive Web App: Install on any device
- Real-time Analytics: Live metrics and updates
- Dark/Light Themes: Customizable interface
- Multi-language Support: English and Russian
- Offline Functionality: Works without internet
- PDF Reports: Executive-ready analysis documents
- CSV/Excel Export: Raw data for further analysis
- API Integration: Webhook support for automation
- Sharing: Easy collaboration with stakeholders
๐ Open A/B Testing Pro - No installation required!
# Clone the repository
git clone https://github.com/artemxdata/ab-testing-pro.git
cd ab-testing-pro
# Install dependencies
npm install
# Start development server
npm start
# Open http://localhost:3000- Visit the live demo
- Click the install button or use browser's "Add to Home Screen"
- Use offline anywhere!
๐ฏ Set Your Goals
โโโ Define baseline conversion rate
โโโ Choose minimum detectable effect
โโโ Set confidence level (95% recommended)
โโโ Configure statistical power (80%+)
โโโ Estimate daily traffic
๐ค Get ML Predictions
โโโ Industry-specific success probability
โโโ Expected lift estimation
โโโ Risk factor analysis
โโโ Optimization recommendations
๐ Statistical Analysis
โโโ Enter conversion data for both groups
โโโ Review significance tests
โโโ Check confidence intervals
โโโ Evaluate effect size
๐ง Bayesian Analysis
โโโ Examine P(B > A) probability
โโโ Review posterior distributions
โโโ Assess expected loss
โโโ Make risk-informed decisions
๐ฐ Business Impact
โโโ Calculate ROI and payback period
โโโ Project annual revenue impact
โโโ Evaluate cost-effectiveness
โโโ Generate executive reports
๐ Professional Reports
โโโ PDF executive summaries
โโโ Technical documentation
โโโ Raw data exports
โโโ API integration payloads
n = [Z_ฮฑโ(2pฬ(1-pฬ)) + Z_ฮฒโ(pโ(1-pโ) + pโ(1-pโ))]ยฒ / (pโ-pโ)ยฒ
Z = (pฬโ - pฬโ) / โ[pฬ(1-pฬ)(1/nโ + 1/nโ)]
Posterior: Beta(ฮฑ + successes, ฮฒ + failures)
P(B > A) = โซโซ[x>y] Beta(ฮฑB, ฮฒB) ร Beta(ฮฑA, ฮฒA) dx dy
ROI = (Additional Revenue - Test Cost) / Test Cost ร 100%
| Category | Technology | Purpose |
|---|---|---|
| Frontend | React 18 + TypeScript | Modern UI development |
| Styling | Tailwind CSS | Utility-first styling |
| Charts | Recharts | Interactive visualizations |
| Math | MathJS | Statistical calculations |
| PWA | Service Workers | Offline functionality |
| Icons | Lucide React | Beautiful iconography |
| Export | jsPDF + html2canvas | Report generation |
| Data | XLSX + PapaParse | File processing |
ab-testing-pro/
โโโ ๐ public/ # Static assets and PWA files
โ โโโ index.html # Main HTML template
โ โโโ manifest.json # PWA manifest
โ โโโ sw.js # Service worker
โโโ ๐ src/
โ โโโ ๐ components/ # React components
โ โ โโโ ABTestingPro.tsx
โ โโโ ๐ hooks/ # Custom React hooks
โ โ โโโ useABTesting.ts
โ โโโ ๐ utils/ # Utility functions
โ โ โโโ statistics.ts # Statistical calculations
โ โ โโโ mlPredictions.ts # ML algorithms
โ โ โโโ exportUtils.ts # Export functionality
โ โโโ ๐ types/ # TypeScript definitions
โ โ โโโ index.ts
โ โโโ App.js # Main app component
โ โโโ index.js # App entry point
โ โโโ index.css # Global styles
โโโ package.json # Dependencies and scripts
โโโ tailwind.config.js # Tailwind configuration
โโโ README.md # This file
- Interactive sample size calculator
- Industry-specific benchmarks
- ML-powered success predictions
- Risk assessment matrix
- Real-time statistical calculations
- Interactive Bayesian visualizations
- ROI and business impact metrics
- Export-ready reports
- Segment analysis and clustering
- Sequential testing recommendations
- Multi-variate test support
- Integration APIs
npm run deploynpm run build
# Upload build/ folderFROM node:18-alpine
WORKDIR /app
COPY package*.json ./
RUN npm ci --only=production
COPY . .
RUN npm run build
EXPOSE 3000
CMD ["npm", "start"]We welcome contributions! Here's how to get started:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
- Use TypeScript for type safety
- Follow the existing code style
- Add tests for new features
- Update documentation as needed
- Ensure PWA functionality works
| Metric | Score | Description |
|---|---|---|
| Lighthouse Performance | 95+ | Optimized loading and rendering |
| Accessibility | 100 | WCAG 2.1 AA compliant |
| Best Practices | 100 | Security and modern standards |
| SEO | 100 | Search engine optimized |
| PWA | โ | Installable with offline support |
- Multi-armed bandit algorithms
- Advanced segmentation analysis
- Google Analytics integration
- Team collaboration features
- Automated test monitoring
- Slack/Teams notifications
- Custom ML model training
- Enterprise SSO support
- Real-time test orchestration
- Advanced causal inference
- Marketplace integrations
- No-code test builder
This project is licensed under the MIT License - see the LICENSE file for details.
- React Team - For the amazing framework
- Tailwind CSS - For the utility-first approach
- Recharts - For beautiful visualizations
- Open Source Community - For inspiration and tools
- GitHub Issues: Report bugs or request features
- Email: artemfromspace@outlook@gmail.com
โญ If this project helped you, please give it a star! โญ
Made with โค๏ธ for the data science community