Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 9 additions & 2 deletions native-engine/auron-planner/proto/auron.proto
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,9 @@ message PhysicalExprNode {
// SparkPartitionID
SparkPartitionIdExprNode spark_partition_id_expr = 20101;

// MonotonicIncreasingID
MonotonicIncreasingIdExprNode monotonic_increasing_id_expr = 20102;

// BloomFilterMightContain
BloomFilterMightContainExprNode bloom_filter_might_contain_expr = 20200;
}
Expand Down Expand Up @@ -365,6 +368,12 @@ message StringContainsExprNode {
message RowNumExprNode {
}

message SparkPartitionIdExprNode {
}

message MonotonicIncreasingIdExprNode {
}

message BloomFilterMightContainExprNode {
string uuid = 1;
PhysicalExprNode bloom_filter_expr = 2;
Expand Down Expand Up @@ -917,5 +926,3 @@ message ArrowType {
// }
//}
message EmptyMessage{}

message SparkPartitionIdExprNode {}
7 changes: 6 additions & 1 deletion native-engine/auron-planner/src/planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,9 @@ use datafusion::{
use datafusion_ext_exprs::{
bloom_filter_might_contain::BloomFilterMightContainExpr, cast::TryCastExpr,
get_indexed_field::GetIndexedFieldExpr, get_map_value::GetMapValueExpr,
named_struct::NamedStructExpr, row_num::RowNumExpr, spark_partition_id::SparkPartitionIdExpr,
named_struct::NamedStructExpr, row_num::RowNumExpr,
spark_monotonically_increasing_id::SparkMonotonicallyIncreasingIdExpr,
spark_partition_id::SparkPartitionIdExpr,
spark_scalar_subquery_wrapper::SparkScalarSubqueryWrapperExpr,
spark_udf_wrapper::SparkUDFWrapperExpr, string_contains::StringContainsExpr,
string_ends_with::StringEndsWithExpr, string_starts_with::StringStartsWithExpr,
Expand Down Expand Up @@ -965,6 +967,9 @@ impl PhysicalPlanner {
ExprType::SparkPartitionIdExpr(_) => {
Arc::new(SparkPartitionIdExpr::new(self.partition_id))
}
ExprType::MonotonicIncreasingIdExpr(_) => {
Arc::new(SparkMonotonicallyIncreasingIdExpr::new(self.partition_id))
}
ExprType::BloomFilterMightContainExpr(e) => Arc::new(BloomFilterMightContainExpr::new(
e.uuid.clone(),
self.try_parse_physical_expr_box_required(&e.bloom_filter_expr, input_schema)?,
Expand Down
1 change: 1 addition & 0 deletions native-engine/datafusion-ext-exprs/src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ pub mod get_indexed_field;
pub mod get_map_value;
pub mod named_struct;
pub mod row_num;
pub mod spark_monotonically_increasing_id;
pub mod spark_partition_id;
pub mod spark_scalar_subquery_wrapper;
pub mod spark_udf_wrapper;
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
// Licensed to the Apache Software Foundation (ASF) under one or more
// contributor license agreements. See the NOTICE file distributed with
// this work for additional information regarding copyright ownership.
// The ASF licenses this file to You under the Apache License, Version 2.0
// (the "License"); you may not use this file except in compliance with
// the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use std::{
any::Any,
fmt::{Debug, Display, Formatter},
hash::{Hash, Hasher},
sync::{
Arc,
atomic::{AtomicI64, Ordering::SeqCst},
},
};

use arrow::{
array::{Int64Array, RecordBatch},
datatypes::{DataType, Schema},
};
use datafusion::{
common::Result,
logical_expr::ColumnarValue,
physical_expr::{PhysicalExpr, PhysicalExprRef},
};

pub struct SparkMonotonicallyIncreasingIdExpr {
partition_id: i64,
row_counter: AtomicI64,
}

impl SparkMonotonicallyIncreasingIdExpr {
pub fn new(partition_id: usize) -> Self {
Self {
partition_id: partition_id as i64,
row_counter: AtomicI64::new(0),
}
}
}

impl Display for SparkMonotonicallyIncreasingIdExpr {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "MonotonicallyIncreasingID")
}
}

impl Debug for SparkMonotonicallyIncreasingIdExpr {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "MonotonicallyIncreasingID")
}
}

impl PartialEq for SparkMonotonicallyIncreasingIdExpr {
fn eq(&self, other: &Self) -> bool {
self.partition_id == other.partition_id
}
}

impl Eq for SparkMonotonicallyIncreasingIdExpr {}

impl Hash for SparkMonotonicallyIncreasingIdExpr {
fn hash<H: Hasher>(&self, state: &mut H) {
self.partition_id.hash(state);
}
}

impl PhysicalExpr for SparkMonotonicallyIncreasingIdExpr {
fn as_any(&self) -> &dyn Any {
self
}

fn data_type(&self, _input_schema: &Schema) -> Result<DataType> {
Ok(DataType::Int64)
}

fn nullable(&self, _input_schema: &Schema) -> Result<bool> {
Ok(false)
}

fn evaluate(&self, batch: &RecordBatch) -> Result<ColumnarValue> {
let num_rows = batch.num_rows();
let start_row = self.row_counter.fetch_add(num_rows as i64, SeqCst);

let partition_offset = self.partition_id << 33;
let array: Int64Array = (start_row..start_row + num_rows as i64)
.map(|row_id| partition_offset | row_id)
.collect();

Ok(ColumnarValue::Array(Arc::new(array)))
}

fn children(&self) -> Vec<&PhysicalExprRef> {
vec![]
}

fn with_new_children(
self: Arc<Self>,
_children: Vec<PhysicalExprRef>,
) -> Result<PhysicalExprRef> {
Ok(Arc::new(Self::new(self.partition_id as usize)))
}

fn fmt_sql(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
write!(f, "fmt_sql not used")
}
}

#[cfg(test)]
mod tests {
use arrow::{
array::Int64Array,
datatypes::{Field, Schema},
record_batch::RecordBatch,
};

use super::*;

#[test]
fn test_data_type_and_nullable() {
let expr = SparkMonotonicallyIncreasingIdExpr::new(0);
let schema = Schema::new(vec![] as Vec<Field>);
assert_eq!(
expr.data_type(&schema).expect("data_type failed"),
DataType::Int64
);
assert!(!expr.nullable(&schema).expect("nullable failed"));
}

#[test]
fn test_evaluate_generates_monotonic_ids() {
let expr = SparkMonotonicallyIncreasingIdExpr::new(0);
let schema = Schema::new(vec![Field::new("col", DataType::Int64, false)]);
let batch = RecordBatch::try_new(
Arc::new(schema.clone()),
vec![Arc::new(Int64Array::from(vec![1, 2, 3]))],
)
.expect("RecordBatch creation failed");

let result = expr.evaluate(&batch).expect("evaluate failed");
match result {
ColumnarValue::Array(arr) => {
let int_arr = arr
.as_any()
.downcast_ref::<Int64Array>()
.expect("downcast failed");
assert_eq!(int_arr.len(), 3);
assert_eq!(int_arr.value(0), 0);
assert_eq!(int_arr.value(1), 1);
assert_eq!(int_arr.value(2), 2);
}
_ => unreachable!("Expected Array result"),
}

let batch2 = RecordBatch::try_new(
Arc::new(schema),
vec![Arc::new(Int64Array::from(vec![4, 5]))],
)
.expect("RecordBatch creation failed");

let result2 = expr.evaluate(&batch2).expect("evaluate failed");
match result2 {
ColumnarValue::Array(arr) => {
let int_arr = arr
.as_any()
.downcast_ref::<Int64Array>()
.expect("downcast failed");
assert_eq!(int_arr.len(), 2);
assert_eq!(int_arr.value(0), 3);
assert_eq!(int_arr.value(1), 4);
}
_ => unreachable!("Expected Array result"),
}
}

#[test]
fn test_evaluate_with_partition_offset() {
let partition_id = 5;
let expr = SparkMonotonicallyIncreasingIdExpr::new(partition_id);
let schema = Schema::new(vec![Field::new("col", DataType::Int64, false)]);
let batch = RecordBatch::try_new(
Arc::new(schema),
vec![Arc::new(Int64Array::from(vec![1, 2]))],
)
.expect("RecordBatch creation failed");

let result = expr.evaluate(&batch).expect("evaluate failed");
match result {
ColumnarValue::Array(arr) => {
let int_arr = arr
.as_any()
.downcast_ref::<Int64Array>()
.expect("downcast failed");
let expected_offset = (partition_id as i64) << 33;
assert_eq!(int_arr.value(0), expected_offset);
assert_eq!(int_arr.value(1), expected_offset + 1);
}
_ => unreachable!("Expected Array result"),
}
}

#[test]
fn test_different_partitions_have_different_ranges() {
let schema = Schema::new(vec![Field::new("col", DataType::Int64, false)]);
let batch = RecordBatch::try_new(
Arc::new(schema),
vec![Arc::new(Int64Array::from(vec![1, 2]))],
)
.expect("RecordBatch creation failed");

let expr1 = SparkMonotonicallyIncreasingIdExpr::new(0);
let expr2 = SparkMonotonicallyIncreasingIdExpr::new(1);

let result1 = expr1.evaluate(&batch).expect("evaluate failed");
let result2 = expr2.evaluate(&batch).expect("evaluate failed");

match (result1, result2) {
(ColumnarValue::Array(arr1), ColumnarValue::Array(arr2)) => {
let int_arr1 = arr1
.as_any()
.downcast_ref::<Int64Array>()
.expect("downcast failed");
let int_arr2 = arr2
.as_any()
.downcast_ref::<Int64Array>()
.expect("downcast failed");

assert_ne!(int_arr1.value(0), int_arr2.value(0));
assert_eq!(int_arr1.value(0), 0);
assert_eq!(int_arr2.value(0), 1i64 << 33);
}
_ => unreachable!("Expected Array results"),
}
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ import org.apache.spark.sql.catalyst.expressions.Expression
import org.apache.spark.sql.catalyst.expressions.Generator
import org.apache.spark.sql.catalyst.expressions.Like
import org.apache.spark.sql.catalyst.expressions.Literal
import org.apache.spark.sql.catalyst.expressions.MonotonicallyIncreasingID
import org.apache.spark.sql.catalyst.expressions.NamedExpression
import org.apache.spark.sql.catalyst.expressions.SortOrder
import org.apache.spark.sql.catalyst.expressions.SparkPartitionID
Expand Down Expand Up @@ -529,6 +530,13 @@ class ShimsImpl extends Shims with Logging {
.setSparkPartitionIdExpr(pb.SparkPartitionIdExprNode.newBuilder())
.build())

case _: MonotonicallyIncreasingID =>
Some(
pb.PhysicalExprNode
.newBuilder()
.setMonotonicIncreasingIdExpr(pb.MonotonicIncreasingIdExprNode.newBuilder())
.build())

case StringSplit(str, pat @ Literal(_, StringType), Literal(-1, IntegerType))
// native StringSplit implementation does not support regex, so only most frequently
// used cases without regex are supported
Expand Down
Loading