This repository contains code and scripts for Gaussian Mixture Model (GMM) parameter estimation using optimization methods.
- Generate synthetic datasets
- Benchmark optimization algorithms
- Reproduce plots and figures presented in the paper
- Clone the repository:
git clone git+https://github.com/agh-a2s/distribution-optimization.git
- Navigate to the cloned directory:
cd distribution-optimization - Install dependencies (using Poetry):
poetry install
Synthetic datasets used in the paper are stored in the results directory.
To regenerate these datasets, run:
poetry run python3 -m distribution_optimization_py.experimentThis script will produce or update synthetic datasets inside the results folder.
To benchmark different optimization algorithms for GMM parameter estimation, run:
poetry run python3 -m distribution_optimization_py.solverAll plots are generated and saved to the images directory. The scripts below reproduce the figures from the paper:
-
Fig. 1:
poetry run python3 -m distribution_optimization_py.plot_binning_scheme_difference
-
Fig. 2:
poetry run python3 -m distribution_optimization_py.experiment.plot
-
Fig. 3:
poetry run python3 -m distribution_optimization_py.solver.plot
-
Fig. 4:
poetry run python3 -m distribution_optimization_py.compare_results