Teamhelper Research Lab focuses on the frontier intersection of AI × AR × Edge Computing, with emphasis on on-device large models, spatial computing, and human–computer interaction.
We conduct systematic research on the integration of AR smart glasses and artificial intelligence, addressing core challenges including:
- intent understanding and tool planning
- multi-device collaborative computation
- on-device inference and acceleration
- large-scale system optimization
Our goal is to bring large-model applications on low-power devices from theory to real-world deployment.
-
Lightweight on-device large models
training, compression, and deployment -
Intent recognition & multi-tool planning
interpretable frameworks and execution pipelines -
Collaborative edge computation
LAN-based P2P compute and task-graph scheduling -
Spatial computing prototypes
AR-centric interaction systems and experimental platforms
We collaborate with:
- university interns
- early-career researchers
- industrial partners
Together, we build an open research and engineering ecosystem delivering:
- open-source code
- models
- datasets
- technical reports
We aim to advance the next generation of intelligent AR-native devices through rigorous research and practical engineering.
Teamhelper Research Lab 聚焦 AI × AR × 边缘计算 的前沿交叉方向,重点关注 端侧大模型、空间计算与人机交互。
我们围绕 AR 眼镜与人工智能的深度融合 开展系统性研究,重点面向以下核心技术挑战:
- 意图识别与工具规划
- 多设备协同计算
- 端侧推理与加速优化
- 大规模系统工程化部署
我们的目标是推动 大模型在低功耗设备上的应用,实现从 理论方法到真实场景落地 的跨越。
-
端侧轻量化大模型
训练、压缩与部署 -
可解释意图识别与多工具规划
框架设计与执行链路 -
边缘协同计算
基于局域网的 P2P 互联与任务图调度 -
空间计算原型系统
面向 AR 的交互系统与实验平台
我们与以下伙伴协同开展研究:
- 高校实习生
- 初级研究人员
- 产业合作伙伴
共建开放的科研与工程生态,持续产出:
- 开源代码
- 模型
- 数据集
- 技术报告
我们致力于以 严谨的科研方法与工程实践 推动 新一代 AR 原生智能设备 的发展。