Skip to content
@Teamhelper-Research-Lab

Teamhelper Research Lab

Advancing AI × AR × Edge: on-device LLMs, intent recognition, tool planning, and collaborative compute for lightweight AR intelligent devices.
Teamhelper Research Lab

🧪 Teamhelper Research Lab

Teamhelper Research Lab focuses on the frontier intersection of AI × AR × Edge Computing, with emphasis on on-device large models, spatial computing, and human–computer interaction.

We conduct systematic research on the integration of AR smart glasses and artificial intelligence, addressing core challenges including:

  • intent understanding and tool planning
  • multi-device collaborative computation
  • on-device inference and acceleration
  • large-scale system optimization

Our goal is to bring large-model applications on low-power devices from theory to real-world deployment.


🔬 Research Directions

  • Lightweight on-device large models
    training, compression, and deployment

  • Intent recognition & multi-tool planning
    interpretable frameworks and execution pipelines

  • Collaborative edge computation
    LAN-based P2P compute and task-graph scheduling

  • Spatial computing prototypes
    AR-centric interaction systems and experimental platforms


🤝 Collaboration & Ecosystem

We collaborate with:

  • university interns
  • early-career researchers
  • industrial partners

Together, we build an open research and engineering ecosystem delivering:

  • open-source code
  • models
  • datasets
  • technical reports

We aim to advance the next generation of intelligent AR-native devices through rigorous research and practical engineering.


🧪 Teamhelper Research Lab

Teamhelper Research Lab 聚焦 AI × AR × 边缘计算 的前沿交叉方向,重点关注 端侧大模型、空间计算与人机交互

我们围绕 AR 眼镜与人工智能的深度融合 开展系统性研究,重点面向以下核心技术挑战:

  • 意图识别与工具规划
  • 多设备协同计算
  • 端侧推理与加速优化
  • 大规模系统工程化部署

我们的目标是推动 大模型在低功耗设备上的应用,实现从 理论方法到真实场景落地 的跨越。


🔬 研究方向

  • 端侧轻量化大模型
    训练、压缩与部署

  • 可解释意图识别与多工具规划
    框架设计与执行链路

  • 边缘协同计算
    基于局域网的 P2P 互联与任务图调度

  • 空间计算原型系统
    面向 AR 的交互系统与实验平台


🤝 合作与生态

我们与以下伙伴协同开展研究:

  • 高校实习生
  • 初级研究人员
  • 产业合作伙伴

共建开放的科研与工程生态,持续产出:

  • 开源代码
  • 模型
  • 数据集
  • 技术报告

我们致力于以 严谨的科研方法与工程实践 推动 新一代 AR 原生智能设备 的发展。


Popular repositories Loading

  1. .github .github Public

Repositories

Showing 1 of 1 repositories

Top languages

Loading…

Most used topics

Loading…