Beautiful — here’s a drop-in replacement README section that cleanly extends your current v1.5 document to include the new qec_golay.py ternary Golay / qutrit layer, without breaking your existing ququart + geometry narrative.
You can paste this directly over your current README, or splice just the new Golay blocks if you prefer.
This release extends QEC beyond ququart stabilizers into ternary Golay-class quantum logic, enabling direct experimentation with qutrit-perfect codes alongside the existing ℤ₄ ququart + lattice geometry framework.
New Module:
src/qec_golay.py
This release adds a full implementation of the ternary Golay code, the unique perfect linear code over GF(3):
- Classical parameters: [11, 6, 5]₃
- Quantum CSS lift: [[11,1,5]]₃
- Corrects any single-qutrit error
- Protects one logical qutrit inside eleven physical qutrits
Used for both X- and Z-type stabilizers:
H = [
[1 0 0 0 0 1 1 1 2 2 0]
[0 1 0 0 0 1 1 2 1 0 2]
[0 0 1 0 0 1 2 1 0 1 2]
[0 0 0 1 0 1 2 0 1 2 1]
[0 0 0 0 1 1 0 2 2 1 1]
]
- Self-orthogonal over GF(3)
- Nullspace generates 729 exact codewords
- CSS-compatible for qutrit stabilizers
Automatically computed from the nullspace of H, producing:
- 6 independent generators
- Full dimension-729 logical subspace
- Deterministic encoding via:
encode_message(m)This Golay layer enables:
- Perfect qutrit error correction
- Magic-state distillation pipelines
- Ternary stabilizer benchmarking
- Direct comparison: binary (d=2), ququart (d=4), and qutrit (d=3)
Unchanged from v1.5:
File:
src/qec_ququart.py
Codewords:
|jₗ⟩ = |j, j, j⟩ for j ∈ {0,1,2,3}
Stabilizers:
S₁ = Z₁ · Z₂⁻¹
S₂ = Z₂ · Z₃⁻¹
Logical Operators:
Xₗ = X₁ · X₂ · X₃
Zₗ = Z₁
File:
src/ququart_lattice_prior.py
Projects logical amplitudes into:
- ℤ⁴ → baseline cubic
- D₄ → dense E8-surrogate lattice
Acts as a geometric pre-decoder that:
- Compresses noise
- Sharpens amplitudes
- Raises effective threshold
- Produces lattice-stabilized logical states
ququart_threshold.pngququart_lattice_prior_threshold.png
Result: D₄ prior strictly reduces logical error rates across all tested pₚₕᵧₛ.
| Regime | Physical Error | Sonic State |
|---|---|---|
| Stable | < 1×10⁻⁵ | Clean, narrow-band |
| Transitional | 1×10⁻⁵ → 1×10⁻³ | Spectral pressure |
| Critical | > 1×10⁻³ | Saturated collapse |
Ternary Golay introduces triplet-locked harmonic fields distinct from ququart D₄ geometry.
src/steane_numpy_fast.pysrc/qec_ququart.pysrc/qudit_stabilizer.pysrc/ququart_lattice_prior.py- ✅
src/qec_golay.py(NEW)
examples/ququart_threshold_demo.pyexamples/ququart_threshold_with_prior.py
Creative Commons Attribution 4.0 International (CC BY 4.0)
@software{slade_2025_qsolkcb,
author = {Slade, T.},
title = {QSOLKCB/QEC: QEC v1.6 — Ququart + Qutrit Golay + Geometry Layer},
year = {2025},
version = {v1.6-golay-qutrit},
publisher = {Zenodo},
doi = {10.5281/zenodo.17742258},
url = {https://doi.org/10.5281/zenodo.17742258}
}quantum error correction · qutrit · ququart · Golay code · ternary stabilizer · qudit stabilizer · D4 lattice · spectral algebraics · sonification · QSOL-IMC · E8-inspired · threshold physics