Skip to content
6 changes: 6 additions & 0 deletions R/ModelArray_Constructor.R
Original file line number Diff line number Diff line change
Expand Up @@ -369,6 +369,9 @@ numElementsTotal <- function(modelarray, scalar_name = "FD") {
#' If TRUE, it will return column names etc to be used for initiating data.frame;
#' if FALSE, it will return the list of requested statistic values.
#' @param ... Additional arguments for `stats::lm()`
#' @param on_error Character: one of "stop", "skip", or "debug". When an error occurs while
#' fitting one element, choose whether to stop, skip returning all-NaN values for that element,
#' or drop into `browser()` (if interactive) then skip. Default: "stop".
#'
#' @return If flag_initiate==TRUE, returns column names, and list of term names of final results;
#' if flag_initiate==FALSE, it will return the list of requested statistic values for a element.
Expand Down Expand Up @@ -623,6 +626,9 @@ analyseOneElement.lm <- function(i_element,
#' @param flag_sse TRUE or FALSE, Whether to calculate SSE (sum of squared error) for the model (`model.sse`).
#' SSE is needed for calculating partial R-squared.
#' @param ... Additional arguments for `mgcv::gam()`
#' @param on_error Character: one of "stop", "skip", or "debug". When an error occurs while
#' fitting one element, choose whether to stop, skip returning all-NaN values for that element,
#' or drop into `browser()` (if interactive) then skip. Default: "stop".
#' @return If flag_initiate==TRUE, returns column names,
#' list of term names of final results, and attr.name of sp.criterion;
#' if flag_initiate==FALSE, it will return the list of requested statistic values for a element.
Expand Down
9 changes: 9 additions & 0 deletions R/analyse.R
Original file line number Diff line number Diff line change
Expand Up @@ -69,6 +69,9 @@
#' @param verbose TRUE or FALSE, to print verbose message or not
#' @param pbar TRUE or FALSE, to print progress bar or not
#' @param n_cores Positive integer, The number of CPU cores to run with
#' @param on_error Character: one of "stop", "skip", or "debug". When an error occurs
#' while fitting an element, choose whether to stop, skip returning all-NaN values for
#' that element, or drop into `browser()` (if interactive) then skip. Default: "stop".
#' @param ... Additional arguments for `stats::lm()`
#' @return Tibble with the summarized model statistics for all elements requested
#' @importFrom dplyr %>%
Expand Down Expand Up @@ -651,6 +654,9 @@ ModelArray.lm <- function(formula, data, phenotypes, scalar, element.subset = NU
#' @param verbose TRUE or FALSE, to print verbose messages or not
#' @param pbar TRUE or FALSE, to print progress bar or not
#' @param n_cores Positive integer, The number of CPU cores to run with
#' @param on_error Character: one of "stop", "skip", or "debug". When an error occurs
#' while fitting an element, choose whether to stop, skip returning all-NaN values for
#' that element, or drop into `browser()` (if interactive) then skip. Default: "stop".
#' @param ... Additional arguments for `mgcv::gam()`
#' @return Tibble with the summarized model statistics for all elements requested
#' @importFrom dplyr %>% mutate
Expand Down Expand Up @@ -1352,6 +1358,9 @@ ModelArray.gam <- function(formula, data, phenotypes, scalar, element.subset = N
#' @param verbose TRUE/FALSE to print messages
#' @param pbar TRUE/FALSE to show progress bar
#' @param n_cores Positive integer number of CPU cores
#' @param on_error Character: one of "stop", "skip", or "debug". When an error occurs in
#' the user function for an element, choose whether to stop, skip returning all-NaN values
#' for that element, or drop into `browser()` (if interactive) then skip. Default: "stop".
#' @param ... Additional arguments forwarded to `FUN`
#' @return Tibble/data.frame with one row per element and first column `element_id`
#' @importFrom dplyr %>%
Expand Down
1 change: 0 additions & 1 deletion vignettes/wrap_function.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,6 @@ The next step is to use this HDF5 file and the CSV file we prepared to perform s
If you installed RStudio (which we recommend), then you can simply launch RStudio.
All the commands in this Step 2 section will be run in R.

> Hint for voxel-wise data for Step 2: You can follow the same steps here. Note that each "element" is a *voxel* now, instead of a *fixel*. Make sure you replace the scalar name, covariates, file paths etc with yours. In addition, as voxel-wise data may have subject-specific masks, you can also tailor the lower threshold of number of subjects when applying `ModelArray.lm()` and `ModelArray.gam()`. See `vignette("voxel-wise_data")` page for more.

### Step 2.1. Load ModelArray package in R

Expand Down