-
Notifications
You must be signed in to change notification settings - Fork 73
Open
Description
Question
基本情况如下:
*配置情况:
server- A800
client- RTX A4000
*问题描述:
Isaac sim打开之后黑屏、一直输出左转:
============ output step=706 ←←←←
s2 infer finish!!
get s2 output lock
=============== [2, 2, 2, 2] =================
Output discretized traj: [2] 0
INFO: 192.168.3.104:48244 - "POST /agent/internvla_n1/step HTTP/1.1" 200 OK
=============== [2, 2, 2] =================
Output discretized traj: [2] 0
INFO: 192.168.3.104:54620 - "POST /agent/internvla_n1/step HTTP/1.1" 200 OK
=============== [2, 2] =================
Output discretized traj: [2] 0
INFO: 192.168.3.104:54632 - "POST /agent/internvla_n1/step HTTP/1.1" 200 OK
=============== [2] =================
Output discretized traj: [2] 0
INFO: 192.168.3.104:54638 - "POST /agent/internvla_n1/step HTTP/1.1" 200 OK
======== Infer S2 at step 944========
*data目录:
*cfg配置:
from internnav.configs.agent import AgentCfg
from internnav.configs.evaluator import (
EnvCfg,
EvalCfg,
EvalDatasetCfg,
SceneCfg,
TaskCfg,
)
eval_cfg = EvalCfg(
agent=AgentCfg(
server_port=9772,
server_host="10.20.20.152",
model_name='internvla_n1',
ckpt_path='',
model_settings={
'env_num': 1,
'sim_num': 1,
'model_path': "checkpoints/InternVLA-N1-DualVLN",
'camera_intrinsic': [[585.0, 0.0, 320.0], [0.0, 585.0, 240.0], [0.0, 0.0, 1.0]],
'width': 640,
'height': 480,
'hfov': 79,
'resize_w': 384,
'resize_h': 384,
'max_new_tokens': 1024,
'num_frames': 32,
'num_history': 8,
'num_future_steps': 4,
'device': 'cuda:0',
'predict_step_nums': 32,
'continuous_traj': True,
'infer_mode': 'partial_async', # You can choose "sync" or "partial_async", but for this model, "partial_async" is better.
# debug
'vis_debug': True, # If vis_debug=True, you can get visualization results
'vis_debug_path': './logs/test_n1/vis_debug',
},
),
env=EnvCfg(
env_type='internutopia',
env_settings={
'use_fabric': False, # Please set use_fabric=False due to the render delay;
'headless': False,
},
),
task=TaskCfg(
task_name='test_n1',
task_settings={
'env_num': 1,
'use_distributed': False, # If the others setting in task_settings, please set use_distributed = False.
'proc_num': 1,
'max_step': 1000, # If use flash mode,default 1000; descrete mode, set 50000
},
scene=SceneCfg(
scene_type='mp3d',
scene_data_dir='data/scene_data/mp3d_pe',
),
robot_name='h1',
robot_flash=True, # If robot_flash is True, the mode is flash (set world_pose directly); else you choose physical mode.
flash_collision=False, # If flash_collision is True, the robot will stop when collision detected.
robot_usd_path='data/Embodiments/vln-pe/h1/h1_internvla.usd',
camera_resolution=[640, 480], # (W,H)
camera_prim_path='torso_link/h1_1_25_down_30',
one_step_stand_still=True, # For dual-system, please keep this param True.
),
dataset=EvalDatasetCfg(
dataset_type="mp3d",
dataset_settings={
'base_data_dir': 'data/vln_pe/raw_data/r2r',
'split_data_types': ['val_unseen'], # 'val_seen'
'filter_stairs': True, # For iros challenge, this is False; For results in the paper, this is True.
# 'selected_scans': ['zsNo4HB9uLZ'],
# 'selected_scans': ['8194nk5LbLH', 'pLe4wQe7qrG'],
},
),
eval_type='vln_distributed',
eval_settings={
'save_to_json': True,
'vis_output': True,
'use_agent_server': True, # If use_agent_server=True, please start the agent server first.
},
)
Metadata
Metadata
Assignees
Labels
No labels
